Page 156 - Wind Energy Handbook
P. 156

130                        AERODYNAMICS OF HORIZONTAL-AXIS WIND TURBINES


            For n ¼ 1 the polynomials are
                                                 p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                       0
                                      P (v) ¼ v ¼  1   ì 2                   (3:160a)
                                       1
          and
                                                    1
                                       0           1
                                      Q (iç) ¼ ç tan    1                    (3:160b)
                                       1
                                                    ç
                                     0
          So, on the disc, where ç ¼ 0, Q (i0) ¼ 1.
                                     1
            Therefore, the pressure distribution is
                                                 p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                       p( ì) ¼ C 0  1   ì 2                   (3:161)
                                                1
          If the pressure in Equation (3.161) is non-dimensionalized using the free-stream
                                                 0
          dynamic pressure (1=2)rU 2 1  the value of C can be related to the thrust coefficient
                                                 1
          by integrating the pressure distribution of Equation (3.161) over the disc area
                                       ð ð    ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                        2ð 1 p
                                                               2
                                    2
                                                                   2
                           2
                                                  2
                         ðR C T ¼ R C 0       1   ì ì dì dł ¼  ðR C  0
                                      1                              1
                                        0  0                   3
          Therefore,
                                                 3
                                           0
                                          C ¼  C T                            (3:162)
                                           1
                                                 2
          and so the pressure step across the disc is
                                                3 p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                      p 1 ( ì) ¼ C T  1   ì 2                 (3:163)
                                                2
          All the remaining polynomials (for m ¼ 0 and odd values of n . 1) produce zero
          thrust. To modify the pressure distribution to suit the boundary conditions an
          appropriate linear combination of solutions can be added to that of Equation
          (3.163).
            The application to helicopter rotors leads to a requirement for the pressure and
          the radial pressure gradient to be zero at the rotor axis as these conditions corre-
          spond to the pressure on actual rotors. The above pressure distribution does not
          have zero pressure at the rotor axis and so needs to be combined with at least one
          other solution. The second axisymmetric solution, n ¼ 3, is

                                    1            1  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                         2
                                                                2
                              0
                                                         2
                             P (v) ¼ v(5v   3) ¼    1   ì (2   5ì )          (3:164a)
                              3     2            2
          and
                             ç              1   5     2            2
                                  2
                                                             0
                                                  2
                     0
                   Q (iç) ¼  (5ç þ 3) tan  1  þ ç þ ,so Q (i0) ¼             (3:164b)
                     3                                       3
                             2              ç   2     3            3
   151   152   153   154   155   156   157   158   159   160   161