Page 153 - Wind Energy Handbook
P. 153

THE METHOD OF ACCELERATION POTENTIAL                                   127

                  0
             (x}, y , z), as defined in Figure 3.56, are transformed to, what is termed, an
             ellipsoidal co-ordinate system (í, ç, ł), ł is the azimuth angle.

                 x0      y9   p ffiffiffiffiffiffiffiffiffiffiffiffiffip ffiffiffiffiffiffiffiffiffiffiffiffiffi  z  p ffiffiffiffiffiffiffiffiffiffiffiffiffip ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                           2
                    ¼ vç,   ¼  1   v 2  1 þ ç sin ł and  ¼  1   v 2  1 þ ç cos ł  (3:147)
                                                                       2
                  R      R                            R
                                                                  p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                        2
             On the surface of the rotor disc ç ¼ 0and r=R ¼ ì ¼   1   v or, conversely,
                 p
                   ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
             v ¼   1   ì 2
               The transformation separates the variables and allows the pressure field to be
             expressed as the product of three functions
                                     p(v, ç, ł) ¼ Ö 1 (v)Ö 2 (ç)Ö 3 (ł)          (3:148)
             each separate function being the solution of a separate, ordinary differential equa-
             tion,

                           d        2  d                     m 2
                              (1   v )  Ö 1 (v) þ n(n þ 1)       Ö 1 (v) ¼ 0    (3:149a)
                           dv        dv                    1   v 2
                                                "               #
                           d       2  d            m 2
                              (1   ç )  Ö 2 (ç) þ        n(n þ 1) Ö 2 (ç) ¼ 0   (3:149b)
                          dç         dç          1   ç 2
                                                    d 2         2
                                                   dł 2  Ö 3 (ł) þ m Ö 3 (ł) ¼ 0  (3:149c)

             where m and n are positive integers.
               Equations (3.149a) and (3.149b) have the form of Legendre’s associated differen-
             tial equations which has solutions which are called associated Legendre polyno-
             mials of the first and second kinds, respectively (see van Bussel, 1995).
               If m ¼ 0 then Equations (3.149a) and (3.149b) are reduced to Legendre’s differ-
             ential equations the solutions for which are
                                            Ö 1 (v) ¼ P n (v)                   (3:150a)


             and

                                            Ö 1 (v) ¼ Q n (v)                   (3:150b)

             where P n (v) is a Legendre polynomial of the first kind and Q n (ç) is a Legendre
             polynomial of the second kind.

                                               1   d n
                                                       2
                                       P n (v) ¼      (v   1) n                  (3:151)
                                               n
                                              2 n! dv n
                                                              2
             Although the polynomials extend beyond the range v < 1, over that interval the
             polynomials are mutually orthogonal
   148   149   150   151   152   153   154   155   156   157   158