Page 162 - Wind Energy Handbook
P. 162

136                        AERODYNAMICS OF HORIZONTAL-AXIS WIND TURBINES


          The tilting moment coefficient is given by
                    ð ð                                          ð
                  1  2ð 1                      1    1 3 p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2ð
                                                                       2
                                                              2
            C my ¼      ì cos łp( ì, ł)ì dì dł ¼  6iC ì  1   ì dì   cos ł dł (3:184)
                                                    2
                  ð  0  0                      ð                  0
          Therefore
                                                5
                                           1
                                         iC ¼  ðC my                          (3:185)
                                           2
                                                4
          The axial induced velocity distribution resulting from the pressure field of Equation
          (3.183) is calculated by integration of Equations (3.145) and is then matched with
          the linear velocity distribution of Equation (3.182) using the same method as for
          Equation (3.171).
                    ð ð
                     2ð 1
                         ì cos ł(a 0 þ a c ì cos ł)2ðì dì dł
                     0  0
                         ð ð                                      !
                                                  1
                          2ð 1            (ì, ª)  X
                       ¼      ì cos łC T A 0   þ     A k ( ì, ª)cos kł ì dì dł  (3:186)
                          0  0              2     k¼1
          The functions A n ( ì, ª) being determined numerically. Again, using the Mangler
          and Squire results as guidance, an expression for a c is found.
                                                  ª
                                        a c ¼ sec 2  C my                     (3:187)
                                                  2


          3.11.5 The Pitt and Peters model

          Pitt and Peters (1981) have developed the linear theory that relates the axial induced
          flow factors to the thrust and moment coefficients given in Equations (3.169),
          (3.172), (3.180), (3.181) and (3.187) which collect together in matrix form

                        2                                   3
                              1                   15      ª
                                        0            ð tan
                   2   36     4                  128      2 72     3
                        6
                     a 0  6                ª                7   C T
                                                            7
                   4  a c  56  0       sec 2  2      0      74  C my  5      (3:188a)
                                                            7
                        6
                        6
                                                            5
                     a S 4                                   7  C mz
                           15     ª                     2  ª
                             ð tan      0       1   tan
                          128      2                     2
                                          (a) ¼ [L](C)                       (3:188b)
          The procedure for using Equation (3.188) is to assume initial values for (a) from
          which the values of (C) can be calculated from the blade element theory. New
          values of (a) are then found from Equation (3.188) and an iteration proceeds.
   157   158   159   160   161   162   163   164   165   166   167