Page 260 - Characterization and Properties of Petroleum Fractions - M.R. Riazi
P. 260

QC: —/—
               P2: KVU/KXT
  P1: KVU/KXT
                                      T1: IML
            AT029-Manual
                        AT029-Manual-v7.cls
                                           June 22, 2007
                                                        20:46
  AT029-06
         240 CHARACTERIZATION AND PROPERTIES OF PETROLEUM FRACTIONS

                                        TABLE 6.2—Values of −    H−H 0 (0)  for use in Eq. (6.56).
                                                            RT c
                                                              P r
         T r   0.01   0.05   0.1    0.2    0.4    0.6    0.8    1     1.2    1.5    2     3      5      7     10
         0.30  6.045  6.043  6.040  6.034  6.022  6.011  5.999  5.987  5.975  5.957  5.927  5.868  5.748  5.628  5.446
         0.35  5.906  5.904  5.901  5.895  5.882  5.870  5.858  5.845  5.833  5.814  5.783  5.721  5.595  5.469  5.278
         0.40  5.763  5.761  5.757  5.751  5.738  5.726  5.713  5.700  5.687  5.668  5.636  5.572  5.442  5.311  5.113
         0.45  5.615  5.612  5.609  5.603  5.590  5.577  5.564  5.551  5.538  5.519  5.486  5.421  5.288  5.154  5.950
         0.50  5.465  5.469  5.459  5.453  5.440  5.427  5.414  5.401  5.388  5.369  5.336  5.270  5.135  4.999  4.791
         0.55  0.032  5.312  5.309  5.303  5.290  5.278  5.265  5.252  5.239  5.220  5.187  5.121  4.986  4.849  4.638
         0.60  0.027  5.162  5.159  5.153  5.141  5.129  5.116  5.104  5.091  5.073  5.041  4.976  4.842  4.704  4.492
         0.65  0.023  0.118  5.008  5.002  4.991  4.980  4.968  4.956  4.945  4.927  4.896  4.833  4.702  4.565  4.353
         0.70  0.020  0.101  0.213  4.848  4.838  4.828  4.818  4.808  4.797  4.781  4.752  4.693  4.566  4.432  4.221
         0.75  0.017  0.088  0.183  4.687  4.679  4.672  4.664  4.655  4.646  4.632  4.607  4.554  4.434  4.303  4.095
         0.80  0.015  0.078  0.160  0.345  4.507  4.504  4.499  4.494  4.488  4.478  4.459  4.413  4.303  4.178  3.974
         0.85  0.014  0.069  0.141  0.300  4.309  4.313  4.316  4.316  4.316  4.312  4.302  4.269  4.173  4.056  3.857
         0.90  0.012  0.062  0.126  0.264  0.596  4.074  4.094  4.108  4.118  4.127  4.132  4.119  4.043  3.935  3.744
         0.93  0.011  0.058  0.118  0.246  0.545  0.960  3.920  3.953  3.976  4.000  4.020  4.024  3.963  3.863  3.678
         0.95  0.011  0.056  0.113  0.235  0.516  0.885  3.763  3.825  3.865  3.904  3.940  3.958  3.910  3.815  3.634
         0.97  0.011  0.054  0.109  0.225  0.490  0.824  1.356  3.658  3.732  3.796  3.853  3.890  3.856  3.767  3.591
         0.98  0.010  0.053  0.107  0.221  0.478  0.797  1.273  3.544  3.652  3.736  3.806  3.854  3.829  3.743  3.569
         0.99  0.010  0.052  0.105  0.216  0.466  0.773  1.206  3.376  3.558  3.670  3.758  3.818  3.801  3.719  3.548
         1.00  0.010  0.052  0.105  0.216  0.466  0.773  1.206  2.593  3.558  3.670  3.758  3.818  3.801  3.719  3.548
         1.01  0.010  0.051  0.103  0.212  0.455  0.750  1.151  1.796  3.441  3.598  3.706  3.782  3.774  3.695  3.526
         1.02  0.010  0.049  0.099  0.203  0.434  0.708  1.060  1.627  3.039  3.422  3.595  3.705  3.718  3.647  3.484
         1.05  0.009  0.046  0.094  0.192  0.407  0.654  0.955  1.359  2.034  3.030  3.398  3.583  3.632  3.575  3.420
         1.10  0.008  0.042  0.086  0.175  0.367  0.581  0.827  1.120  1.487  2.203  2.965  3.353  3.484  3.453  3.315
         1.15  0.008  0.039  0.079  0.160  0.334  0.523  0.732  0.968  1.239  1.719  2.479  3.091  3.329  3.329  3.211
         1.20  0.007  0.036  0.073  0.148  0.305  0.474  0.657  0.857  1.076  1.443  2.079  2.807  3.166  3.202  3.107
         1.30  0.006  0.031  0.063  0.127  0.259  0.399  0.545  0.698  0.860  1.116  1.560  2.274  2.825  2.942  2.899
         1.40  0.005  0.027  0.055  0.110  0.224  0.341  0.463  0.588  0.716  0.915  1.253  1.857  2.486  2.679  2.692
         1.50  0.005  0.024  0.048  0.097  0.196  0.297  0.400  0.505  0.611  0.774  1.046  1.549  2.175  2.421  2.486
         1.60  0.004  0.021  0.043  0.086  0.173  0.261  0.350  0.440  0.531  0.667  0.894  1.318  1.904  2.177  2.285
         1.70  0.004  0.019  0.038  0.076  0.153  0.231  0.309  0.387  0.446  0.583  0.777  1.139  1.672  1.953  2.091
         1.80  0.003  0.017  0.034  0.068  0.137  0.206  0.275  0.344  0.413  0.515  0.683  0.996  1.476  1.751  1.908
         1.90  0.003  0.015  0.031  0.062  0.123  0.185  0.246  0.307  0.368  0.458  0.606  0.880  1.309  1.571  1.736
         2.00  0.003  0.014  0.028  0.056  0.111  0.167  0.222  0.276  0.330  0.411  0.541  0.782  1.167  1.411  1.577
         2.20  0.002  0.012  0.023  0.046  0.092  0.137  0.182  0.226  0.269  0.334  0.437  0.629  0.937  1.143  1.295
         2.40  0.002  0.010  0.019  0.038  0.076  0.114  0.150  0.187  0.222  0.275  0.359  0.513  0.761  0.929  1.058
         2.60  0.002  0.008  0.016  0.032  0.064  0.095  0.125  0.155  0.185  0.228  0.297  0.422  0.621  0.756  0.858
         2.80  0.001  0.007  0.014  0.027  0.054  0.080  0.105  0.130  0.154  0.190  0.246  0.348  0.508  0.614  0.689
         3.00  0.001  0.006  0.011  0.023  0.045  0.067  0.088  0.109  0.129  0.159  0.205  0.288  0.415  0.495  0.545
         3.50  0.001  0.004  0.007  0.015  0.029  0.043  0.056  0.069  0.081  0.099  0.127  0.174  0.239  0.270  0.264
         4.00  0.000  0.002  0.005  0.009  0.017  0.026  0.033  0.041  0.048  0.058  0.072  0.095  0.116  0.110  0.061
         Taken with permission from Ref. [9]. The value at the critical point (T r = P r = 1) is taken from the API-TDB [5]. Bold numbers indicate liquid region.
          For low and moderate pressures where truncated virial  may be used from Eq. (5.71), but corresponding derivatives
         equation in the form of Eq. (5.113) is valid, the relation for  must be used. The above equation may be applied at the same
         fugacity coefficient can be derived from Eq. (6.53) as  region that Eq. (5.75) or (5.114) were applicable, that is, V r >
                                                              2.0or T r > 0.686 + 0.439P r [2].
                                    BP
        (6.61)               ln(φ) =                            For real gases that follow truncated virial equation with
                                    RT                        three terms (coefficients D and higher assumed zero in
         This relation may also be written as                 Eq. 5.76), the relations for C P and C V are givens as

                                 P r  BP c
        (6.62)           φ = exp
                                                                  C P − C P    T B   (B − TB ) − C + TC − T C /2
                                 T r  RT c                              ig      2              2           2
         where (BP c /RT c ) can be calculated from Eq. (5.71) or (5.72).  R  =−  V  −           V 2
         Similarly enthalpy departure based on the truncated virial  (6.64)
         equation is given as [1]                                        C V − C ig    2TB + T B     TC + T C /2
                                                                                                         2
                                                                                             2



                                                              (6.65)           V  =−             −       2
                H − H ig           dB (0)          dB (1)                   R             V            V
        (6.63)         = P r B (0)  − T r  + ω B (1)  − T r
                  RT c              dT r            dT r
                                                              where B and C are the first-order derivatives of B and C with


                                                    (0)
         where B (0)  and B (1)  are given by Eq. (5.72) with dB /dT r =  respect to temperature, while B and C are the second-order


                       (1)
         0.675/T 2.6  and dB /dT r = 0.722/T 5.2 . Obviously B (0)  and B (1)  derivatives of B and C with respect to temperature.
               r                     r

                                                              --`,```,`,``````,`,````,```,,-`-`,,`,,`,`,,`---
   Copyright ASTM International
   Provided by IHS Markit under license with ASTM             Licensee=International Dealers Demo/2222333001, User=Anggiansah, Erick
   No reproduction or networking permitted without license from IHS  Not for Resale, 08/26/2021 21:56:35 MDT
   255   256   257   258   259   260   261   262   263   264   265