Page 401 -
P. 401

7.1 Pseudohomogeneous Kernels  385


                                                                              1
                                                                                     α
                                                                                α
                              k κ+j (x, tz)=(2π) −n   a 0  (x, ξ){e iξ·tz  −   ξ (itz) }dξ
                                                       m−j
                                                                             α!
                                                                       |α|<κ+j
                                                 |ξ|≤R
                                               1     1
                                                                      α 0                 α
                                  −                         R −κ−j+|α| Θ a m−j (x, Θ)dω(Θ)(itz)
                                           κ + j −|α| α!
                                    |α|<κ+j
                                                       |Θ|=1


                                               a
                                    +      e iξ·tz 0 m−j (x, ξ)dξ
                                      |ξ|≥R
                           Now set t =1 and R = 1, which gives the form of k κ+j (x, z). Next, set

                           R = t −1  and change the coordinates ξ = tξ which yields the identity
                                                k κ+j (x, tz)= t κ+j k κ+j (x, z) .
                           Again, k κ+j ∈ ψhf κ+j .
                              For m ∈ IN 0 , let us consider first the case κ + j = 0. Then (7.1.63) reads
                                                                                  α
                                  k 0 (x, z)=(2π) −n/2 F −1  a 0  (x, ξ) −     a α,0 (x)(−D) δ(z)
                                                    ξ →z −n
                                                                  |α|≤2k
                           where a 0  (x, ξ)= |ξ| −n 0  (x, Θ). In this case Lemma 7.1.2 implies
                                                a
                                                       )
                                  −n             −n
                             k 0 (x, z)= c(x){a 0 + a 1 log |z|}                       (7.1.66)
                                                                                     ,
                                                                      1     iπ Θ · z 0

                                      −n
                                                0
                                                                               )


                                 +(2π)         a  (x, Θ) − c(x)  log      +           dω(Θ)
                                                     )
                                                                                          )
                                                −n
                                                                   |Θ · z 0 |  2 |Θ · z 0 |
                                                                    )
                                                                               )
                                         | ) Θ|=1
                           where z 0 = z/|z| and c(x)=  1      a 0 −n  (x, Θ)dω(Θ). The constants a 0
                                                                           )
                                                                     )
                                                        ω n
                                                          | ) Θ|=1
                           and a 1 are explicitly given by Lemma 7.1.2. This shows that k 0 (x, z) ∈
                                       n
                           ψhf 0 (Ω × IR ) and for x  = y, the function k 0 (x, x − y) is the Schwartz
                           kernel of a 0  (x, −iD).
                                     −n
                              For the remaining case κ + j ∈ IN, i.e. j> m + n, we have again the
                           representation (7.1.65) for the Schwartz kernel of a m−j (x, −iD). For the ho-
                           mogeneity of k κ+j , we see that

                                                                               1
                                                                                  α
                               k κ+j (x, tz)=(2π) −n   a 0  (x, ξ) e iξ·tz  −    ξ (itz) α  dξ
                                                        m−j
                                                                               α!
                                                                        |α|≤κ+j
                                                  |ξ|≤R
                                             1     1
                                                           −κ−j+|α| ) α 0               α
                                −                         R        Θ a m−j (x, Θ)dω(Θ)(itz)
                                                                                   )
                                                                             )
                                         κ + j −|α| α!
                                  |α|<κ+j
                                                     |Θ|=1
                                     1
                                                                       α      iξ·tz 0
                                                 ) α 0
                            +              (log R)Θ a m−j (x, Θ)dω(Θ)(itz) +  e   a m−j (x, ξ)dξ
                                                           )
                                                                 )
                                    α!
                              |α|=κ+j
                                      |Θ|=1                              R≤|ξ|
                                                                                       (7.1.67)
   396   397   398   399   400   401   402   403   404   405   406