Page 404 -
P. 404

388    7. Pseudodifferential Operators as Integral Operators

                                   α

                                ∂      ∂
                                          β
                                                        0                      m−|α|−J
                                             a(x, ξ)−  a    (x, ξ)   ≤ c(α, β, J)|ξ|   (7.1.71)
                               ∂ξ     ∂x
                                                        m−j
                                                    j<J
                           for |ξ|≥ 1 and any multiindices α and β. For showing (7.1.71), let L ∈ IN
                           and the multiindex γ be chosen arbitrarily and consider the estimate
                                    α
                                 ∂     ∂
                                          β

                              γ                          0
                             ξ              a(x, ξ) −   a m−j (x, ξ)                   (7.1.72)
                                ∂ξ    ∂x
                                                    j<L
                                                            β             β
                                                 γ
                                               ∂           ∂ k(x, z)     ∂ k κ+j (x, z)
                                        −iz·ξ           α
                              ≤        e           (−iz)           −                 ψ(z) dz
                                             ∂z              ∂x β           ∂x β
                                                                     j<L
                                  |z|≤1
                                                           γ
                                                                    β
                                                        ∂          ∂ k κ+j (x, z)
                                  +           e −iz·ξ  − i   (−iz) α           1 − ψ(z)  dz
                                                       ∂z              ∂x β
                                    j<L     1
                                         |z|≥
                                            2
                           where (7.1.69) is employed. From (7.1.68) we conclude that the integrand of
                                                                               q
                                                                                       n
                           the first integral on the right–hand side in (7.1.72) is in C (Ω × IR ) with
                           q = κ + L − 1+ |α|−|γ|. Hence, this integral is bounded for q = 0 which
                           corresponds to the choice of γ so that |γ| = L − 1+ |α|− m − n. For the
                           remaining terms we notice that, for any integer k we have the estimates
                                                     γ

                                                  ∂            β
                                        e      −i       (−iz)        (x, z) 1 − ψ(z)
                                2k       −iz·ξ               α  ∂ k κ+j
                              |ξ|                                 β                 dz
                                                 ∂z            ∂x
                                      1
                                   |z|≥
                                      2
                                                                       γ


                                                                    ∂
                                           =         e −iz·ξ (∆ z ) k  −i
                                                                   ∂z
                                                                        {···}dz
                                                   1
                                                |z|≥
                                                   2

                                           ≤ c      |z| −2k−|γ|+κ+j+|α| dz < ∞
                                                   1
                                                |z|≥  2
                           provided −2k −|γ|+κ+j +|α| < −n.So,wechoose2k ≥−m−|γ|+L+|α|.
                           Then (7.1.72) implies the estimates
                                              α

                                           ∂      ∂
                                                     β
                                                                     0
                                                        a(x, ξ) −   a
                                          ∂ξ     ∂x
                                                                     m−j (x, ξ)
                                                                j<L
                                                          −|γ|
                                          ≤ c(α, β, m, L)|ξ|                           (7.1.73)
                                                          m−|α|−L+n+1
                                          ≤ c(α, β, m, L)|ξ|           for |ξ|≥ 1 .
                              To obtain the desired estimates (7.1.71) we now choose L = J + n +1
                                                             β

                                                          ∂     0
                           and exploit the homogeneity of     a m−j (x, ξ) of degree m − j. Then it
                                                         ∂x
                           follows with (7.1.73) and the triangle inequality that
   399   400   401   402   403   404   405   406   407   408   409