Page 402 -
P. 402

386    7. Pseudodifferential Operators as Integral Operators

                           By choosing first R = 1 one finds representations of k κ+j (x, tz)andof

                           k κ+j (x, z) where t = 1. Transforming ξ = tξ and afterwards choosing
                           R = t −1 , we finally obtain
                                                               1                          α

                                                                      ) α 0

                                     κ+j
                           k(x, tz)= t    k κ+j (x, z)−log t         Θ a m−j (x, Θ)dω(Θ)(iz)  .
                                                                                     )
                                                                                )
                                                              α!
                                                        |α|=κ+j
                                                                |Θ|=1
                                                      n
                           Hence, k κ+j ∈ Ψhf κ+j (Ω × IR ) can be written explicitly as

                                                                 a
                            k κ+j (x, z)  = |z| κ+j (2π) −n  p.f.  e iξ·z 0 0  (x, ξ)dξ − (log |z|)p κ+j (x, z)
                                                                  m−j
                                                         IR n
                              with
                                                 1                           α
                                                        ) α 0
                            p κ+j (x, z)  =             Θ a m−j (x, Θ)dω(Θ)(iz) .
                                                                  )
                                                                        )
                                                 α!
                                          |α|=κ+j
                                                   |Θ|=1
                              It remains to establish that
                                                                   n
                                  k(x, z)=      k κ+j is in C (Ω × IR )for 0 ≤  <κ + J.
                                          0≤j<J
                           From the definitions of k and k κ+j we obtain
                                         α

                                      ∂      ∂   β
                                   −i              k(x, z) −     k κ+j (x, z)
                                     ∂z      ∂x
                                                           0≤j<J
                                                         ∂  β

                                                 iξ·z α
                                           −n
                                    =  (2π)     e   ξ          a(x, ξ) −  a m−j (x, ξ) dξ
                                                        ∂x
                                             IR n                      j<J

                                                                   ∂  β

                                    =  (2π) −n      1 − χ(ξ) e iξ·z α    a −    a m−j dξ
                                                              ξ
                                                                  ∂x
                                                                             j<J
                                             |ξ|≤1

                                                                 ∂  β
                                        +(2π) −n    χ(ξ)e iξ·z α       a −   a m−j dξ
                                                            ξ
                                                                ∂x
                                                   1                      j<J
                                               |ξ|≥  2
                           where |α|≤  <κ + J. The first of the integrals on the right–hand side is
                                       n
                           in C (Ω × IR ) due to the Paley–Wiener–Schwartz theorem 3.1.3. The inte-
                               ∞
                                                                                       |α|+m−J
                           grand of the second integral can be estimated by c(α, β , m, J)|ξ|
                           where |α|+m−J< κ+J +m−J = −n. Therefore, this integral is continuous
                           for all these α and any β.
                           (ii) Now let k ∈ ψhk κ with κ = −m − n for m ≥ 0 be given. Then k admits

                           the pseudohomogeneous expansion   k κ+j with
                                                          j≥0
   397   398   399   400   401   402   403   404   405   406   407