Page 405 -
P. 405

7.1 Pseudohomogeneous Kernels  389

                                  α

                               ∂      ∂
                                         β
                                                        0
                                            a(x, ξ) −  a
                              ∂ξ     ∂x
                                                        m−j  (x, ξ)
                                                    j<L
                                              α      β


                                           ∂      ∂
                                                        0                              m−|α|−J
                             ≤                         a m−j (x, ξ)  + c(α, β, m, J + n +1)|ξ|
                                          ∂ξ     ∂x
                                J≤j≤J+n
                                             m−|α|−J
                             ≤ c 1 (α, β, m, J)|ξ|    for |ξ|≥ 1 ,
                           which are the desired estimates (7.1.71).
                                                                m
                                                  m
                              Consequently, A m ∈L (Ω)and A ∈L (Ω) as proposed.
                                                  c             c
                           7.1.3 Parity Conditions
                           Definition 7.1.3. (H¨ormander [131, Vol.I, Section 3.2])
                              The pseudohomogeneous function k q ∈ Ψhf q for q ∈ Z is of parity σ if it
                           satisfies the condition
                                                          σ
                                            k q (x, −z)=(−1) k q (x, z) for z  =0 .    (7.1.74)
                           We now state the following crucial result concerning the transformation of
                           the finite part integral operators.
                           Lemma 7.1.9. The parity condition (7.1.74) for k q ∈ Ψhf q with q ∈ Z,
                           is satisfied if and only if the corresponding homogeneous symbol a 0  (x, ξ)
                                                                                     −n−q
                           satisfies the parity condition
                                                       σ 0
                                     a 0  (x, −ξ)=(−1) a      (x, ξ) for ξ  =0 .       (7.1.75)
                                      −n−q               −n−q
                           Proof: i) Let k q ∈ Ψhf q satisfy the parity condition (7.1.74). Then with
                           Lemma 7.1.4, the symbol

                                        a ψ (x, ξ):= e −ix·ξ  k q (x, x − y)ψ(x − y)e iy·ξ dy
                                                       IR n
                           associated with a suitable cut–off function ψ ∈ C 0 ∞  with ψ(z)=1 for |z|≤
                           ε, ε > 0, and ψ(z)=0 for |z|≥ 2ε and ψ(−z)= ψ(z) satisfies the parity
                           condition, i.e.

                                    a ψ (x, −ξ)  =  e iz·ξ k q (x, z)ψ(z)dz
                                                 IR n

                                              =     e −iz·ξ k q (x, −z)ψ(z)dz
                                                 IR n

                                                             σ
                                              =     e −iz·ξ (−1) k q (x, z)ψ(z)dz
                                                 IR n

                                                      σ −i·ξ
                                              =   (−1) e      k q (x, x − y)e iy·ξ ψ(x − y)dy
                                                           IR n
                                                      σ
                                              =   (−1) a ψ (x, ξ) .
   400   401   402   403   404   405   406   407   408   409   410