Page 407 -
P. 407

7.1 Pseudohomogeneous Kernels  391

                           for any |β|≥ 0. Now, choose |β| = m. Then, with the previous remark we
                           have
                                                          β
                               β!a β (x)  = a m (x, D) (•− x) ψ(|•−x|)

                                                                       β
                                               − p.f.  k κ (x, x − y)(y − x) ψ(|y − x|)dy
                                                     Ω

                                                              β i(x−y)·ξ
                                       =   (2π) −n/2    (y − x) e     ψ(|y − x|)a m (x, ξ)dydξ
                                                    n
                                                   IR IR n

                                                                        β
                                               − p.f.  k κ (x, x − y)(y − x) ψ(|y − x|)dy .
                                                    IR n
                              We want to show a β (x) = 0 under assumption (7.1.76). First we note that
                           Lemma 7.1.9 implies the parity conditions
                                          k κ+j (x, x − y)=(−1) m−j+1 k κ+j (x, x − y)  (7.1.79)
                           for the homogeneous term of the asymptotic kernel expansion. A straightfor-
                           ward computation shows for j = 0 by substituting z = y − x and replacing ξ
                           by −ξ, that


                                                               β iz·ξ
                                   a β (x)  =  1  (2π) −n/2   z e   a m (x, −ξ)ψ(|z|)dzdξ
                                              β!
                                                          n
                                                        IR IR n


                                                                   β
                                                  − p.f.  k κ (x, −z)z ψ(|z|)dz .
                                                       IR n
                           Now, use the parity conditions for a m as well as for k κ after transforming z
                           to −z and obtain
                                      a β (x)= −a β (x) ,  i.e. a β (x) = 0 for all |β| = m.
                           Substituting this into (7.1.78) and choosing |β| = m − 1, we obtain

                                                          β
                               β!a β (x)= a 1 (x, D) (•− x) ψ(|•−x|)

                                                                          β
                                               − p.f.  k κ+1 (x, x − y)(y − x) ψ(|•−x|)dy
                                                     Ω

                                                               β i(x−y)·ξ
                                        =  (2π) −n/2    (y − x) e      ψ(|•−x|)a 1 (x, ξ)dydξ
                                                    n
                                                   IR IR n

                                                                          β
                                               − p.f.  k κ+1 (x, x − y)(y − x) ψ(|•−x|)dy
                                                     Ω
                           with the application of our theorem to the particular operator a 0 (x, D). Ap-
                           plying again the parity conditions (7.1.76) and (7.1.79), we find in the same
                           manner as for |β| = m,now
   402   403   404   405   406   407   408   409   410   411   412