Page 411 -
P. 411

7.2 Coordinate Changes and Pseudohomogeneous Kernels  395

                           Proof: Since with Φ, also Ψ(y ) is a smooth diffeomorphism, the Taylor


                           expansion of z = x − y about x can be written as the asymptotic expansion


                                         x − y = Ψ(x ) − Ψ(y ) ∼   π α (x ,x − y ) .    (7.2.4)
                                                               |α|≥1
                           The homogeneous polynomials π α are given explicitly as
                                                             (α)  α
                                                        (−1)   ∂ Ψ             α
                                         π α (x ,x − y )=          (x )(x − y ) .       (7.2.5)





                                                         α!    ∂x  α
                                                                           y − x


                           By using the homogeneity of π α and setting Θ =        , the relation


                                                                           |y − x |
                           (7.2.4) yields


                                                                 |α|−1
                                                         |x − y |   π α (x , −Θ )  .    (7.2.6)
                                    |x − y| = |x − y |
                                                     |α|≥1
                           Hence,
                                                                              |α|−1





                                  y − x        |α|=1  π α (x , −Θ )+  |α|≥2  |x − y |  π α (x , −Θ )
                             Θ =        = −
                                 |y − x|           π α (x , −Θ )+             |α|−1 π α (x , −Θ )



                                               |α|=1              |α|≥2  |x − y |

                           holds for every |x − y | > 0. This implies with |x − y |→ 0,





                                                                 π α (x , −Θ )
                                                             |α|=1
                                                                             .
                                            Θ = Θ(Θ )= −                                (7.2.7)


                                                             |α|=1
                                                                 π α (x , −Θ )
                                                              ∂Ψ
                           The denominator does not vanish since  ∂x   is invertible. In fact, Θ(Θ ) defines

                           a diffeomorphic mapping of the unit sphere onto itself.
                              Now we consider first the positively homogeneous terms of the asymptotic
                           expansion of k(x, x − y), namely

                                              f(x, x − y) ∼   f κ+j (x, x − y) .        (7.2.8)
                                                           j≥0
                           In terms of the transformation and homogeneity of f κ+j , this reads
                                                        κ+j


                                f κ+j (x, x − y)=  |x − y|  f κ+j Ψ(x ),Θ(Θ )
                             j≥0               j≥0
                                                                         κ+j
                                                          |α|−1




                             =     |x − y |       |x − y |                 f κ+j Ψ(x ),Θ(Θ ) .
                                           κ+j
                                                             π α (x , −Θ )
                                j≥0           |α|≥1
                           The second factor can be rewritten in the form
   406   407   408   409   410   411   412   413   414   415   416