Page 412 -
P. 412

396    7. Pseudodifferential Operators as Integral Operators

                                                                               κ+j


                                       π α (x , −Θ )+   |x − y |
                                                                |α|−1
                                                                   π α (x , −Θ )
                                   |α|=1            |α|≥2
                                                        κ+j



                                    =                       1+     |x − y | q  ,κ+j (x ,Θ )



                                             π α (x , −Θ )
                                         |α|=1                   ≥1
                           where the functions q  ,κ+j (x ,Θ ) defined on (Ω ×{|Θ | =1}) are obtained




                           by using a power series representation. Collecting terms, we obtain


                                           f κ+j (x, x − y) ∼  |x − y |  f κ+p (x ,Θ )  (7.2.9)
                                                                     κ+p
                                        j≥0               p≥0
                           where
                                                               κ+j








                            f κ+p (x ,Θ )=                       q  ,κ+j (x ,Θ )f κ+j Ψ(x ),Θ(Θ ) .

                                                   π α (x , −Θ )
                                         j+ =p  |α|=1
                                         j, ≥0
                              If κ ∈ Z then

                                 k(x, x − y) ∼  f κ+j (x, x − y)+   log |x − y|p κ+j (x, x − y)
                                             j≥0                j≥0
                                                               κ+j≥0
                           where p κ+j (x, z) are homogeneous polynomials of degree κ + j. According to
                           our previous analysis it suffices to consider only the terms

                                         Q(x, x − y):=     log |x − y|p κ+j (x, x − y) .
                                                       j≥0
                                                      κ+j≥0
                              In view of (7.2.6) we may rewrite



                              Q(x, x − y) ∼       log |x − y |p κ+j (x, x − y)
                                               j≥0
                                              κ+j≥0


                                                        π α (x , −Θ ) p κ+j (x, x − y)  (7.2.10)

                                              + log
                                                    |α|=1



                                              + log  1+    |x − y | q  ,1 (x ,Θ )  p κ+j (x, x − y) .



                                                         ≥1
                           For the polynomials p κ+j we use (7.2.4) to obtain






                                     p κ+j (x, x − y) ∼ p κ+j Ψ(x ) ,  π α (x ,x − y )
                                                                  |α|≥1




                                                   ∼          p κ+ ,j (x ,x − y )      (7.2.11)
                                                        ≥j+κ
                           with the homogeneous polynomials  p κ+  of degrees κ +  .
   407   408   409   410   411   412   413   414   415   416   417