Page 417 -
P. 417

7.2 Coordinate Changes and Pseudohomogeneous Kernels  401

                           since the integrand is continuous. To show that b α (x ) = 0 it therefore suffices

                           to prove that


                                                               α
                                         p.f.  k q (x, x − y)(y − x) χ(|y − x|)J(y )dy

                                            Ω

                                                                     α
                                           =   p.f.  k q (x, x − y)(y − x) χ(|y − x|)dy  (7.2.28)
                                                  Ω
                           for q = κ + j  ∈ IN 0 and j =0,...,L, in view of the asymptotic expansion

                           of k. In the integral on the left–hand side set x = Ψ(x )and y = Ψ(y ). The

                           C  ∞  cut–off function χ( ) has the properties χ( )=1 for 0 ≤   ≤   0 and
                           χ( )=0 for 2  0 ≤   with some fixed   0 > 0. For ε> 0, the integral on the
                           right–hand side is given by

                                                       α
                                 p.f.  k q (x, x − y)(y − x) χ(|y − x|)dy
                                     Ω
                                               2  0

                                                                          α
                                  =   p.f.       r q+|α|+n−1 χ(r)drk q (x, −ω)ω dω
                                      ε→0
                                         |ω|=1 r=ε
                                             q+|α|+n    2  0
                                              0            q+|α|+n−1         ε
                                                                              q+|α|+n
                                  =   p.f.           +    r        χ(r)dr −            ×
                                      ε→0 q + |α| + n                       q + |α| + n
                                                         0

                                                           α
                                           ×      k q (x, −ω)ω dω
                                             |ω|=1

                                                      α
                                  = c χ     k q (x, −ω)ω dω
                                       |ω|=1
                           where
                                                             2  0
                                                   q+|α|+n      q+|α|+n−1
                                           c χ =          +    r        χ(r)dr
                                                q + |α| + n
                                                              0
                           is a constant.
                              In the same manner, for the integral on the left–hand side in (7.2.28), and
                           by employing the transformation, we obtain
   412   413   414   415   416   417   418   419   420   421   422