Page 418 -
P. 418

402    7. Pseudodifferential Operators as Integral Operators


                                                                                    α




                            I (ε)  :=             k q (Ψ(x ),Ψ(x ) − Ψ(y ))(Ψ(y ) − Ψ(x )) ×


                                      Ω   \{|y   −x   |<ε}



                                                             ×χ(|Ψ(y ) − Ψ(x )|)J(y )dy

                                                                    α
                                   =                k q (x, x − y)(y − x) χ(|y − x|)dy
                                      Ω\{|y−x|<  ε (ω)}
                                             2  0

                                                                          α
                                   =               q+n−1+|α| χ( )d k q (x, −ω)ω dω
                                      |ω|=1  =  ε (ω)
                                           ⎧                                             ⎫
                                               q+|α|+n   2  0
                                                0            q+|α|+n−1         ε (ω)

                                           ⎨                                      q+|α|+n ⎬
                                   =                   +    r        χ(r)dr −              ×
                                           ⎩q + |α| + n                       q + |α| + n ⎭
                                      |ω|=1                0
                                                        α
                                            × k q (x, −ω)ω dω .
                           Hence, with the expansion of   ε (ω) in Lemma 7.2.3,

                             p.f. I (ε)
                             ε→0
                                                                  1
                                               α
                                                                                        α
                                      k q (x, −ω)ω dα − p.f.            P(ε, ω)k q (x, −ω)ω dω
                             = c χ
                                                      ε→0     q + |α| + n
                                 |ω|=1                   |ω|=1
                           with
                                                    N                    q+|α|+n
                                                             k     N+1
                                         P(ε, ω):=     c k (ω)ε + O(ε  )        .
                                                    k=1
                           By using the geometric series, P(ε, ω) can be written in the form
                                                                 N
                                                                                       q+n+|α|
                                                      q+n+|α|       c k  k−1      N
                             P(ε, ω)= −ε q+n+|α|  c 1 (ω)    1+       (ω)ε   + O(ε )
                                                                    c 1
                                                                k=1
                                    = −ε q+n+|α|   c 1 (ω)   q+n+|α| ×
                                              ∞                 N
                                                  q + n + |α|     c k   k−1      N
                                            ×                       (ω)ε    + O(ε )
                                                                  c 1
                                               =0              k=2
                                            q+n+|α|+          q+n+|α|+N
                                    = −    ε         c   (ω)+ O(ε      )
                                         ≥0
                           where q + n + |α| +    = 0 for all   ∈ IN 0 . Hence,

                                                   q+n+|α|+                   α

                                   I (ε)  = −     ε              c   (ω)k q (x, −ω)ω dω
                                                ≥0
                                                           |ω|=1

                                                                  α
                                             +      c χ (ω)k q (x, −ω)ω dω + O(ε q+n+|α|+N ) .
                                               |ω|=1
   413   414   415   416   417   418   419   420   421   422   423