Page 422 -
P. 422

406    7. Pseudodifferential Operators as Integral Operators

                           Lemma 7.2.8. Let k q ∈ Ψhf q (Ω). In the case when q ≤−n is an integer
                           then we require in addition that k q satisfies the parity condition
                                   k q (x, y − x)=(−1) −q−n+1 k q (x, x − y) for y  = x.  (7.2.33)

                              Then the following invariance properties hold:

                                                               α

                                         p.f.  k q (x, x − y)(y − x) χ(|y − x|)J(y )dy
                                            Ω

                                                                    α
                                          =   p.f.  k q (x, x − y)(y − x) χ(|y − x|)dy .  (7.2.34)
                                                  Ω

                              In the integral on the left–hand side it is understood that x = Ψ(x ) and
                           y = Ψ(y ).The C  ∞  cut–off function χ( ) has the properties χ( )=1 for

                           0 ≤   ≤   0 ,χ( )=0 for 2  0 ≤   for some fixed   0 > 0. In formula (7.2.34)

                                                                      (x) for all sufficiently small
                           we assume that B 2  0  ⊂ Ω and Ψ B ε (x ) ⊂ B   0
                           ε> 0.
                           Proof: With the polar coordinates y−x = rω, the right–hand side of (7.2.34)
                           is given by
                                                    2  0

                                                                α
                                      I r =p.f.       k q (x, −ω)ω χ(r)r q+|α|+n−1 drdω .
                                           ε→0
                                              |ω|=1 r=ε
                           For the left–hand side of (7.2.34), since for ε> 0 the integrand is regular, we
                           have similarly

                                                    2  0

                                                                 α
                                     I   =p.f.         k q (x, −ω)ω χ(r)r q+|α|+n−1 drdω .
                                          ε→0
                                             |ω|=1 r=ε(ω)
                              Now we first consider the case q + n + |α| = 0. Then,
                                                     2  0

                                                        −1                            α
                                I r  =  p.f.  log   0 +  r  χ(r)dr − log ε  k q (x, −ω)ω dω
                                        ε→0
                                                                       |ω|=1
                                                      0

                                                          α
                                    = c χ (0)    k q (x, −ω)ω dω
                                            |ω|=1
                           with the constant c χ (0) := log   0 +  2  0    r −1 χ(r)dr.
                                                             0
                              For the left–hand side of (7.2.34) we have
   417   418   419   420   421   422   423   424   425   426   427