Page 425 -
P. 425

7.2 Coordinate Changes and Pseudohomogeneous Kernels  409

                                                                   ε
                                            p.f. P(ε, ω)= p.f. c 1 (ω) −p −p ℘(ε, ω) .
                                            ε→0          ε→0
                                                        p+1
                                                                                     j
                                                                 j
                           Therefore, employing ℘(ε, ω)=     a j (ω)ε with a j (−ω)=(−1) a j (ω), we
                                                        j=0
                           find
                                   1                         α
                                     p.f.    P(ε, ω)k q (x, −ω)ω dα
                                   p ε→0
                                        |ω|=1
                                                        p+1
                                              1                  j−p         α

                                          =     p.f.       a j (ω)ε  k q (x, −ω)ω dω
                                              p ε→0
                                                        j=0
                                                   |ω|=1
                                              1                    α
                                          =         a p (ω)k q (x, −ω)ω dω .
                                              p
                                               |ω|=1
                              The latter integral as an integral over the unit sphere satisfies
                                 1                   α
                                       a p (ω)k q (x, −ω)ω dω
                                 p
                                  |ω|=1
                                            1                       α
                                        =         a p (−ω)k q (x, ω)(−ω) d(−ω)
                                            p
                                             |ω|=1
                                            1                                  α
                                        =    (−1) p−q−n−1+|α|    a p (ω)k q (x, −ω)ω dω
                                            p
                                                            |ω|=1
                                              1                   α
                                        = −         a p (ω)k q (x, −ω)ω dω
                                              p
                                               |ω|=1
                           and, hence, vanishes. This implies again


                                                                      α
                                          I   = c χ (p)  a p (ω)k q (x, −ω)ω dω = I r .
                                                   |ω|=1
                           This completes the proof of Lemma 7.2.8.

                              We are now able to prove Theorem 7.2.6.
                           Proof of Theorem 7.2.6: With the asymptotic pseudohomogeneous ex-
                           pansion of the Schwartz kernel of A,
                                                     L

                                        k(x, x − y)=   k κ+j (x, x − y)+ k R (x, x − y) ,
                                                    j=0
   420   421   422   423   424   425   426   427   428   429   430