Page 424 -
P. 424

408    7. Pseudodifferential Operators as Integral Operators


                                                                    α
                                             I   = c χ (0)  k q (x, −ω)ω dω = I r ,
                                                     |ω|=1
                           which implies the proposed result (7.2.34) in this case.
                              Next, we consider the case −p := q + n + |α| < 0. Then the right–hand
                           side in (7.2.34) takes the form
                                          ⎧                            ⎫
                                                    2  0
                                                0      −p−1         ε                  α
                                          ⎨    −p                    −p ⎬
                                  =   p.f.       +    r    χ(r)dr +          k q (x, −ω)ω dω
                              I r           −
                                               p
                                      ε→0 ⎩                          p ⎭
                                                     0                   |ω|=1

                                                         α
                                  = c χ (p)    k q (x, −ω)ω dω
                                          |ω|=1
                           where
                                                      2  0
                                                                        −p
                                               c χ (p)=  r −p−1  χ(r)dr −  0  .
                                                                       p
                                                        0
                              Similarly,

                                                             1                        α
                                                      α
                               I   = c χ (p)  k q (x, −ω)ω dω +  p.f.  P(ε, ω)k q (x, −ω)ω dω
                                                             p ε→0
                                        |ω|=1                     |ω|=1
                           with
                                                                   −p

                                                   P(ε, ω)=   ε (ω)  .
                           By inserting the expansion (7.2.24) of   ε (ω), we obtain
                                             N                   −p
                                                     k      N+1
                               P(ε, ω)  =       c k (ω)ε + O(ε  )
                                            k=1
                                                                              , −p

                                                           N
                                                                            N
                                                  ε
                                       = c 1 (ω) −p −p  1+     c k (ω)  ε k−1  + O(ε )
                                                              c 1 (ω)
                                                          k=2
                                                                                      , p

                                                       ∞        N  c k (ω)
                                                                                  N


                                                  ε
                                       = c 1 (ω) −p −p    (−1)          ε k−1  + O(ε )   .
                                                                   c 1 (ω)
                                                        =0      k=2
                           We note that by setting ℘ 1 :=  N    c k (ω) k−1  that ℘ 1 ∈P since (7.2.25) holds.
                                                             ε
                                                         c 1 (ω)
                                                      k=2
                           Now, apply   · p times Lemma 7.2.7; then it follows that
                                                                        N
                                                             ε
                                              P(ε, ω)= c 1 (ω) −p −p   ℘ + O(ε )
                           with ℘ ∈P.If N = p + 1, then
   419   420   421   422   423   424   425   426   427   428   429