Page 423 -
P. 423

7.2 Coordinate Changes and Pseudohomogeneous Kernels  407

                                                 2  0


                                                                                      α
                               I   =p.f.  log   0 +  r −1 χ(r)dr − log   ε (ω)  k q (x, −ω)ω dω .
                                    ε→0
                                                  0                    |ω|=1
                           In terms of the expansion (7.2.24) of   ε (ω) in Lemma 7.2.3, we have
                                                  N
                                                                     ,
                                                          k      N+1
                               − log   ε (ω)= − log  c k (ω)ε + O(ε  )
                                                 k=1
                                                                     N

                                                                        c k (ω)  k−1   N
                                         = − log ε − log c 1 (ω) − log 1+    ε    + O(ε )
                                                                        c 1 (ω)
                                                                     k=2
                           from which we obtain

                                 p.f. − log   ε (ω)
                                ε→0
                                                                 N
                                                                                       ,
                                                              ∞
                                                                 1

                                                                                   N
                                  =   p.f.  − log c 1 (ω) − log ε +    c k k−1  + O(ε )
                                                                         ε
                                      ε→0                              c 1
                                                               =1   k=2
                                  = − log c 1 (ω) .
                           Hence,

                                                                                    α
                                                        α

                                 I   = c χ (0)  k q (x, −ω)ω dω −    log c 1 (ω) k q (x, ω)ω dω .
                                         |ω|=1               |ω|=1
                           Since the integration is taken over the unit sphere, we have

                                                               α
                                     −      log c 1 (ω) k q (x, −ω)ω dω
                                       |ω|=1

                                                                       α
                                       = −       log c 1 (−ω)k q (x, +ω)(−ω) d(−ω)
                                            |ω|=1

                                                                                α
                                       = −       log c 1 (ω)(−1) −q−n−1+|α| k q (x, −ω)ω dω
                                            |ω|=1

                                                                 α
                                       =       log c 1 (ω)k q (x, −ω)ω dω
                                           |ω|=1
                           which implies

                                                                   α
                                                  log c 1 (ω)k q (x, −ω)ω dω =0 .
                                             |ω|=1
                           Consequently,
   418   419   420   421   422   423   424   425   426   427   428