Page 420 -
P. 420

404    7. Pseudodifferential Operators as Integral Operators

                           Hence,

                                           1                                    α
                                b α (x )=     p.f.           k κ+j (x, x − y)(y − x) dy

                                           α!
                                                   Ω\{|x−y|<ε}


                                                                                    α
                                                  −              k κ+j (x, x − y)(y − x) dy .
                                                   Ω\{|x−y|<εR(ω)}
                           Since κ + j = −m − n + j  ∈ IN 0 , the kernel function k κ+j is positively
                           homogeneous without log–terms. Then, in terms of polar coordinates y −x =
                            ω,wehave

                                                                   εR(ω)
                                         1                       α      κ−m+|α|+j−1

                                b α (x )=  p.f.      k κ+j (x, −ω)ω    r           drdω .
                                        α!
                                                |ω|=1             r=ε
                              Since κ = −m − n, we have to distinguish two cases:
                           |α|  = m − j:

                                             1      |α|−m+j    1
                                 b α (x )=     p.f. ε                ×

                                            α! ε→0         m −|α| + j

                                                          |α|−m+j                α
                                              ×       R(ω)       − 1 k κ+j (x, −ω)ω dω =0
                                                |ω|=1
                           since |α|− m + j  =0.

                           |α| = m − j:

                                                  1                 α

                                         b α (x )=      k κ+j (x, −ω)ω log R(ω)dω .
                                                 α!
                                                   |ω|=1
                           This gives with j = m −|α| and κ = −n − m the desired formula (7.2.30).


                           7.2.2 The Class of Invariant Hadamard Finite Part Integral
                           Operators under Change of Coordinates
                           For m ∈ IN 0 , we shall see that the extra terms b α in Theorem 7.2.2 also
                           vanish for a large class of operators whose kernel functions satisfy the parity
                           conditions.
                              We now state the following crucial result concerning the transformation
                           of finite part integral operators.
   415   416   417   418   419   420   421   422   423   424   425