Page 416 -
P. 416

400    7. Pseudodifferential Operators as Integral Operators

                           which implies, if we define

                                                <

                                                             α      α      β    β     |α|−|β|−2
                              F(ε,  , ω):= −ε +            D Φ(x)ω    • D Φ(x)ω
                                                  |α|≥1,|β|≥1
                           for | |≤   0 and |ε|≤ ε 0 , |ω| = 1, that the equation
                                                       F(ε,  , ω)=0

                           admits a unique C –solution
                                            ∞

                                              = f(ε, ω),  i.e. F ε, f(ε, ω),ω =0
                           since                =
                                       ∂F       >
                                                                      β
                                                        D Φ(x)ω α  · D Φ(x)ω β  > 0
                                                         α
                                          |  =0 = >
                                        ∂       ?
                                                   |α|=1
                                                   |β|=1
                           for all ω on the unit sphere, because Φ is diffeomorphic. Moreover, f(ε, ω)is
                           also defined for ε< 0 where f(ε, ω) < 0. In particular, we see that
                                                   −f(−ε, −ω)= f(ε, ω)                 (7.2.27)
                           since
                                              F(−ε, − , ω)= −F(ε,  , ω)=0 .
                           Since F is C ,sois f the asymptotic expansion (7.2.24) for any N ∈ IN.
                                       ∞
                           Hence, the parity condition (7.2.25) then is an immediate consequence of
                           (7.2.27).

                           Lemma 7.2.4. For 0 <m  ∈ IN 0 , the coefficients b α (x )=0 in (7.2.20).

                                              m
                           Proof: Since A ∈L (Ω), it follows from Theorem 7.1.8 that the kernel k
                                              c
                           belongs to Ψhk κ (Ω) with κ = −n − m. Hence,
                                                     L

                                        k(x, x − y)=    k κ+j (x, x − y)+ k R (x, x − y)
                                                    j=0
                           where k R ∈ C κ+L−δ (Ω × Ω) with some δ ∈ (0, 1) and k κ+j ∈ Ψhf κ+j .For L
                           sufficiently large,

                                                               α
                                        p.f.  k R (x, x − y)(y − x) dy| x=Ψ(x   )
                                            Ω

                                                                α
                                          =    k R (x, x − y)(y − x) dy| x=Ψ(x   )
                                             Ω

                                                                              α








                                          =    k R (x ,x − y )J(y ) Ψ(y ) − Ψ(x )  dy

                                             Ω
   411   412   413   414   415   416   417   418   419   420   421