Page 406 -
P. 406

390    7. Pseudodifferential Operators as Integral Operators

                           Hence, by taking the limit 0 <t →∞,wehave

                                          a 0  (x, −ξ)  =  lim t n+q a ψ (x, −tξ)
                                           −n−q
                                                           t→∞
                                                               σ
                                                       =   (−1) lim t n−q a ψ (x, tξ)
                                                                t→∞
                                                               σ 0
                                                       =   (−1) a    (x, ξ) .
                                                                 −n−q
                           ii) Conversely, the kernel k q (x, x − y) can be expressed in the form (6.1.12),
                           i.e.

                                                  −2N    −n         N 0         i(x−y)·ξ
                                k q (x, x − y)= |y − x|  (2π)  (−∆ ξ ) a   (x, ξ)e     dξ .
                                                                       −n−q
                                                            IR n
                           Then
                                                               σ
                                               k q (x, x − y)=(−1) k q (x, x − y)
                                                                    σ 0
                           follows immediately from a 0 −n−q (x, −ξ)=(−1) a −n−q (x, ξ).
                              As a consequence of Lemma 7.1.9, the parity conditions will provide us
                           with a criterion when the local differential operator in the representation
                           (7.1.60) will vanish.
                                                      m
                           Theorem 7.1.10. Let A ∈L (Ω) ,m ∈ IN 0 and suppose the parity condi-
                                                      c
                           tions
                                  a 0 m−j (x, −ξ)=(−1) m−j+1 0 m−j (x, ξ) for 0 ≤ j ≤ m  (7.1.76)
                                                         a
                           for the homogeneous terms in the symbol expansion of A.Then

                                             (Au)(x)= p.f.   k(x, x − y)u(y)dy .       (7.1.77)

                                                          Ω
                           Proof: From the representation (7.1.60) we observe that


                                         β                                   β
                                A (•− x) ψ(|•−x|) | x =0 +   (k(x, x − y)(y − x) ψ(|y − x|)dy
                                                           Ω
                                                   m
                           for any |β| >m and A ∈L (Ω). This implies
                                                   c
                               m

                                                  β                      β
                                  a m−j (x, D) (•− x) ψ(|•−x|) + A R (•− x) ψ(|•−x|) (x)
                              j=0
                                          m
                                                            α       β
                                      =              a α (x)D y  (y − x) ψ(|y − x|) | y=x
                                          j=0  |α|=m−j


                                                                        β
                                              +p.f.   k κ+j (x, x − y)(y − x) ψ(|y − x|)dy
                                                   Ω

                                                                      β
                                                  +   k R (x, x − y)(y − x) ψ(|y − x|)dy  (7.1.78)
   401   402   403   404   405   406   407   408   409   410   411