Page 353 - Introduction to Statistical Pattern Recognition
P. 353

7  Nonparametric Classification and Error Estimation          335



                         Experiment 7: Estimation of  the Parzen error, L and R
                               Data:   p  (X) = 0.5Nx(M1 ,I)+0.5Nx(M2,1)
                                      p 2 (X) = OSNx(M3 J)+0.5Nx(M4 ,I)
                                      MI = [OO. . . OlT,  M2 = [6.58 0. . . 0IT
                                      M3 = I3.29 0. . . O]*,   M4 = (9.87 0. . . OI7
                                      n  = 8, E~  = 7.5%
                               Sample size: N, = N, = 100
                               No. of trials: T = 10
                               Kernel: Normal with A I  = A2 = I
                               Kernel size: 0.6-6.0
                               Threshold: Option 4
                               Results: Fig. 7-10 [I21







                              30.




                              20.




                              IO.






                                      1.0  2.0  3.0  4.0  5.0  6.0
                                Fig. 7-10  Parzen error for a non-normal test set.



                         Figure  7-10  shows  the  results  for  this  experiment.  With  a  moderate
                    value of  1', the Bayes error of  7.5% is bounded properly, when the Parzen den-
                    sity  estimate  for  each  class  represents the  given  two-modal  distribution.  On
                    the  other hand, as  I'  grows, the  density estimate converges to the  kernel  func-
                    tion  itself.  Thus,  with  normal  kernels,  the  likelihood  ratio  of  the  estimated
   348   349   350   351   352   353   354   355   356   357   358