Page 434 - A First Course In Stochastic Models
P. 434
REFERENCES 429
De Kok, A.G. and Tijms, H.C. (1985) A two-moment approximation for a buffer design
problem requiring a small rejection probability. Performance Evaluation, 7, 77–86.
Franx, G.J. (2001) A simple solution for the M/D/c waiting-time distribution. Operat. Res.
Lett., 29, 221–229.
X
Franx, G.J. (2002) The waiting-time distribution for the M /D/c queue. Prob. Engng
Inform. Sci., submitted.
Fredericks, A.A. (1982) A class of approximations for the waiting time distribution in a
GI/G/1 queueing system. Bell System Techn. J., 61, 295–325.
Fuhrmann, S.W. and Cooper, R.B. (1985) Stochastic decompositions in the M/G/1 queue
with generalized vacations. Operat. Res., 33, 1117–1129.
Gavish, B. and Schweitzer, P.J. (1977) The Markovian queue with bounded waiting time.
Management Sci., 23, 1349–1357.
Gouweleeuw, F.N. (1996) A General Approach to Computing Loss Probabilities in Finite-
Buffer Queues. Tinbergen Institute, Amsterdam.
Gouweleeuw, F.N. and Tijms, H.C. (1996) A simple heuristic for buffer design in finite-
capacity queues. Eur. J. Operat. Res., 88, 592–598.
Gouweleeuw, F.N. and Tijms, H.C. (1998) Computing loss probabilities in discrete-time
queues. Operat. Res., 46, 149–153.
Hooghiemstra, G. (1987) A path construction for the virtual waiting-time of an M/G/1
queue. Statistica Neerlandica, 45, 175–181.
Hordijk, A. and Tijms, H.C. (1976) A simple proof of the equivalence of the limiting
distributions of the continuous-time and the embedded process of the queue size in the
M/G/1 queue. Statistica Neerlandica, 30, 97–100.
Keilson, J. and Servi, L.D. (1989) Blocking probability for M/G/1 vacation systems with
occupancy level dependent schedules. Operat. Res., 37, 134–140.
Kleinrock, L. (1975) Queueing Systems, Vol. I, Theory. John Wiley & Sons, Inc., New York.
Kleinrock, L. (1976) Queueing Systems, Vol. II, Computer Applications. John Wiley & Sons,
Inc., New York.
Kr¨ amer, W. and Langenbach-Belz, M. (1976) Approximate formulas for the delay in the
queueing system GI/G/1. In: Proc. 8th International Teletraffic Congress, Melbourne,
paper 235, pp. 1–8. North-Holland, Amsterdam.
Newell, G.F. (1971) Applications of Queueing Theory. Chapman and Hall, London.
Page, E. (1972) Queueing Theory in O.R. Butterworth, London.
Sakasegawa, H., Miyazawa, M. and Yamazaki, G. (1993) Evaluating the overflow probability
using the infinite queue. Management Sci., 39, 1238–1245.
Schwartz, M. (1996) Broadband Integrated Networks. Prentice Hall, Englewood Cliffs NJ.
Seelen, L.P., Tijms, H.C. and Van Hoorn, M.H. (1985) Tables for Multi-Server Queues.
North-Holland, Amsterdam.
Tak´ acs, L. (1962) Introduction to the Theory of Queues. Oxford University Press, Oxford.
Takahashi, Y. (1981) Asymptotic exponentiality of the tail of the waiting time distribution
in a Ph/Ph/c queue. Adv. Appl. Prob., 13, 619–630.
Takahashi, Y. and Takami, Y. (1976) A numerical method for the steady-state probabilities of
a GI/G/c queueing system in a general class. J. Operat. Res. Soc. Japan, 19, 147–157.
Tijms, H.C. (1992) Heuristics for finite-buffer queues. Prob. Engng Inform. Sci., 6, 277–285.
Tijms, H.C. and Van Hoorn, M.H. (1982) Computational methods for single-server and
multi-server queues with Markovian input and general service times. In Applied Prob-
ability Computer Sciences, The Interface, edited by R.L. Disney and T.J. Ott, Vol. II,
pp. 71–102. Birkh¨ auser, Boston.
Tijms, H.C., Van Hoorn, M.H. and Federgruen, A. (1981) Approximations for the steady-state
probabilities in the M/G/c queue. Adv. Appl. Prob., 13, 186–206.