Page 60 - Hybrid Enhanced Oil Recovery Using Smart Waterflooding
P. 60

52      Hybrid Enhanced Oil Recovery using Smart Waterflooding

                            0.9
                            0.8
                            0.7

                            0.6
                         Oil Recovery  0.5                 Live oil with HC interaction

                            0.4
                                                           Live oil without HC interaction
                            0.3                            Dead oil with HC interaction

                            0.2
                            0.1
                                         High   Low              High
                                Seawater  salinity  salinity     salinity
                             0
                               0     0.5     1      1.5     2      2.5     3      3.5
                                                        PV
                FIG. 3.6 The numerical simulations of low salinity waterflood with and without the reactions involving water-
                soluble hydrocarbon components and acidic/basic components of the hydrocarbon phase. (From Kazemi Nia
                Korrani, A., Jerauld, G. R., & Sepehrnoori, K. (2016). Mechanistic modeling of low-salinity waterflooding
                through coupling a geochemical package with a compositional reservoir simulator. SPE Reservoir Evaluation
                and Engineering, 19(1), 142e162. https://doi.org/10.2118/169115-PA.)



             Oil-wet  RCOO-  RCOO-            RCOO-                                  Water-wet

                                        RCOO-
                RCOO-
                                                                        +2  Sr +2       Mg +2  Sr +2
                                                         RCOO-
                               RCOO-
                                                                      Mg
                    Mg +2  Sr +2            Mg +2 Sr +2                     Fe +2  -OOCR     Fe +2
                   +2    Fe +2  -OOCR      +2     Fe +2  -OOCR  RCOO-  Ca +2          Ca +2
                 Ca         +2           Ca          +2                      Ca +2             Ca +2
           RCOO-
                          Ca                        Ca                               +2
               Mg +2        +2          Mg +2         +2          Mg +2        +2   Mg           +2
                 +2  Clay  Sr    -OOCI   +2   Clay  Sr            Mg +2  Clay  Sr    +2  Clay   Sr
           RCOO- Mg Ca +2  Fe +2        Mg Ca +2    Fe +2            +2      Fe +2  Mg         Fe +2
                    +2  +2  Sr +2 Ca +2  -OOCR  Fe +2  Ca +2  Sr +2  Ca +2  Ca  Fe +2  +2  +2 Ca +2  Ca +2  Ca +2
            RCOO-                   RCOO-                              Ca  Sr         Fe +2  Ca +2  Sr +2
                  Fe Ca
                RCOO-  RCOO-  -OOCR  -OOCR  RCOO-  RCOO-  -OOCR   RCOO-        -OOCR
                FIG. 3.7 The schematic description of relationship between wettability of a sandstone rock and
                organometallic complexes on the rock surface. (From Kazemi Nia Korrani, A., Jerauld, G. R., & Sepehrnoori,
                K. (2016). Mechanistic modeling of low-salinity waterflooding through coupling a geochemical package with a
                compositional reservoir simulator. SPE Reservoir Evaluation and Engineering, 19(1), 142e162. https://doi.org/
                10.2118/169115-PA.)
            A series of studies (Brady & Krumhansl, 2012;  and reservoir-oil surface speciation (Table 3.1).
          Brady, Krumhansl, & Mariner, 2012; Brady et al.,  Recalling Eq. (3.37), the surface complexation model
          2015; Brady and Thyne 2016) have proposed the sur-  is incorporated with a diffuse layer model to account
          face complexation model to simulate the observations  for the electrical double layer effect. In the oil-water
          of LSWF processes in both sandstone and carbonate  interface, the surface complexation model describes
          reservoirs. The studies (Brady & Krumhansl, 2012;  the two main reactions: (1) deprotonation of nitrogen
          Brady et al., 2012; Brady et al., 2015) have proposed  and carboxylate groups of oil and (2) calcium-
          the surface complexation model to describe the  carboxylate surface complexation reaction. For the
          oil-water interface charge, clay edge surface charge,  kaolinite and quartz minerals, there are the reactions
          the adsorption of Ca 2þ  and Mg 2þ  on the clay edges,  of protonation/deprotonation. The adsorption of
   55   56   57   58   59   60   61   62   63   64   65