Page 152 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 152

148   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                                                                      4i
                                                             3
                        the sets   d and   i are compact in R and R , respectively. Thus

                                ¯
                                ˆ ¯
                         ξ i (¯z i , ¯e i ,θ i , ˆε i ,y d , ˙y d , ¨y d )  has a maximum value M i ,i = 1,··· ,n − 1on

                          d ×   i.
                           Then the following theorem states the main results:
                        Theorem 9.1. Consider system (9.1) with unknown non-linear dead-zone un-
                        der Assumptions 9.1 and 9.2, and the adaptive control (9.36)–(9.38), then for

                                            T  T ¯ T ¯T T    n       n−1 2          4i
                                                 ˆ
                        any initial condition [¯ z , ¯e ,θ , ˆε ] :  V i +  e ≤ 2P 0 ⊂ R and
                                            i  i  i  i      i=1      i=1 i
                        non-negative initial parameters θ i (0) ≥ 0, ˆε i (0) ≥ 0, there exist control feedback
                                                  ˆ
                        gains k i and filter parameters μ i fulfilling (9.49), such that the closed-loop control
                        system is semi-globally stable in the sense that all signals in the closed-loop system
                        remain ultimately bounded.
                            ⎧               1      1
                                    m 1
                            ⎪ k 1 ≥     +      +
                            ⎪      2g 10 c 11  4g 10 c 12  4g 10 c 13
                            ⎪                             2
                            ⎪             1      1    c i−1,2 g
                            ⎪       m i                   i−1,1
                            ⎨  k i ≥   +     +      +        ,    i = 2,··· ,n − 1
                                  2g i0 c i1  4g i0 c i2  4g i0 c i3  g i0          (9.49)
                                          c n−1,2 g 2
                                    m n       n−1,1
                            ⎪ k n ≥     +
                            ⎪
                                   2g n0  c n1  g n0
                            ⎪
                            ⎪
                            ⎪        k e
                              μ i ≤     ,      i = 1,··· ,n − 1, k e > 0
                            ⎩        2
                                   c i3 g +1
                                     i1
                        Proof. For initial conditions in any given compact set   i for P 0 > 0, it is
                        always possible to construct a compact set   larger than   i comprising the
                                         ,i = 1,··· ,n, in which the NN approximation (9.5)is
                        set   d , C i and   z i
                        valid and ϕ ij (¯x i ) is bounded. Consider the Lyapunov function candidate as
                                                      n          n−1 2
                                            V   =       V i +  k e  e               (9.50)
                                                      i=1    2   i=1 i
                        where k e > 0 is a design parameter.
                           Recalling the previous recursive design procedures from Step 1 to Step n,
                        one can obtain

                                              m 1    1     1    2
                                ˙ V ≤− g 10k 1 −  −     −      z
                                                                1
                                              2c 11  4c 12  4c 13
                                     n−1
                                                m i   1     1         2     2
                                   −      g i0k i −  −   −     − c i−1,2g  z        (9.51)
                                                                      i−1,1  i
                                                2c i1  4c i2  4c i3
                                      i=2

                                               m n       2      2
                                   − k ng n0   −  − c n−1,2g n−1,1  z n
                                              2c n1
                        with gamma as:
                                                    
                         2
                              2 g 10 k 1 −m 1 /2c 11 −1/4c 12 −1/4c 13 ,2(g i0 k i −m i /2c i1 −1/4c i2 −1/4c i3 −c i−1,2 g  ),
                        γ =min  	                 
               
           i−1,1
                                                            2
                              2 k n g n0  −m n /2c n1 −c n−1,2 g 2 n−1,1  ,2 1/μ i −(c i3 g −1)/k e ,
 i σ i /2,
 n σ n /2,
 ai σ ai ,
 an σ an ,
                                                            i1
   147   148   149   150   151   152   153   154   155   156   157