Page 149 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 149

ANDSC of Strict-Feedback Systems With Non-linear Dead-Zone  145


                            Step n. This is the last step to obtain v(t). Consider z n = x n − s n−1 and
                            s ˙ n−1 =−  e n−1  , one may obtain
                                   μ n−1
                                                                                       e n−1
                                      s
                             ˙ z n =˙x n −¨ n−1 = f n (x,0) + h n (x,x(t − τ nj (t))) + g n d(t)v(t) + ρ(t) +
                                                                                       μ n−1
                                                                                       (9.35)
                            The final control v is given as

                                                    ˆ
                                                   θ n   T                   z n
                                        v =−k nz n −  z n   (Z n )  n (Z n ) − ε n tanh(  ),  (9.36)
                                                         n
                                                   2                         ω n
                                              ˙   
 n  2  T
                                                                        ˆ
                                              ˆ =
                                              θ n   [z   (Z n )  n (Z n ) − σ n θ n ],  (9.37)
                                                      n
                                                        n
                                                  2
                                                              z n
                                                ˙ ˆ ε n = 
 an [z n tanh(  ) − σ an ˆε n ],  (9.38)
                                                              ω n
                            where k n > 0, ω n > 0, 
 n > 0, 
 an > 0and σ n > 0, σ an > 0 are design param-
                            eters.
                               The following Lyapunov function is used:
                                                m n         t
                                       1  2  c n1     e  à nm  − (t−ς) 2         g n0    2
                                  V n = z +                  e      ϕ (x(ς))dς +    θ ˜ n
                                          n
                                                                     nj
                                                       τ
                                       2      2    1 −¯ n                        2
 n
                                                j=1       t−τ nj
                                            1
                                                  ∗
                                       +        (¯ε − g n0  ˆε n ) 2                   (9.39)
                                                  n
                                         2g n0  
 an
                            where c n1 > 0 is a positive constant, g n0 is the lower bound of control func-
                            tion g n (·),   = min(d l0 ,d r0 ) ≤ d(t) and p = (d l1 + d r1 )max{b r ,−b l }≥ |ρ(t)| are
                            the information on the bounds for the dead-zone dynamics, the scalar ˆε n is
                                                                    ∗
                            the estimation of the bounded constant ¯ε = ε + g n1p.
                                                                ∗
                                                                n   n
                               Thetimederivativeof V n along (9.35)–(9.38) can be given as

                                                                           e n−1
                              ˙ V n ≤z n f n (x,0) + g n [dv + ρ]+ h n (x,x(t − τ n (t))) +
                                                                          μ n−1
                                        m n
                                     c n1     e  à nm  2    2
                                   +              ϕ (x(t)) − ϕ (x(t − τ nj ))
                                                            nj
                                                   nj
                                      2     1 −¯ n
                                                τ
                                        j=1
                                     c n1      m n e  à nm     t  − (t−ς) 2   g n0    ˙
                                                                                  ˜ ˜
                                   −                       e      ϕ (x(ς))dς +    θ n θ n
                                                                   nj
                                       2     j=1 1 −¯τ n  t−τ nj (t)           
 n
                                      1
                                          ∗        ˙
                                   −    (¯ε − g n0  ˆε n )ˆε n
                                          n
                                     
 an
                                   m n  2                             g n0    2  T
                                 ≤    z + z nQ n (Z n ) + g ndz nv + g n1p|z n | −  ˜ z   (Z n )  n (Z n )
                                       n                                  θ n n  n
                                   2c n1                               2
   144   145   146   147   148   149   150   151   152   153   154