Page 146 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 146

142   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                        Substituting (9.14)–(9.22)into(9.12), one can obtain ˙ V 1 as

                                                                   ˜ 2
                                         m 1   1     1    2   σ 1g 10 θ 1  σ a1     2
                                                                            ∗
                          ˙ V 1 ≤− g 10k 1 −  −   −      z −         −     (ε − g 10 ˆε 1 )
                                                          1                 1
                                        2c 11  4c 12  4c 13     4      2g 10
                                σ a1g 10 ˆε 2 1  2  2  2  2  σ 1g 10 θ 1 ∗2  1  σ a1 ε ∗2
                                                                               1
                              −        + c 12g z + c 13g e +       +     +
                                            11 2
                                                     11 1
                                   2                          4      2g 10  2g 10
                                                                 m 1 e  à 1m

                                            c 11         2  z 1             2
                                         ∗
                              + 0.2785ω 1 ε +   1 − 2tanh (  )            ϕ (x 1 ) −  V d1
                                                                           1j
                                         1
                                             2            ω 1     j=1 1 −¯τ 1
                                                       2
                                                2
                                              2
                            ≤− γ 1V 1 + ϑ 1 + c 12g z + c 13g e 2
                                              11 2
                                                       11 1
                                                     m 1 e   ϕ (x 1 )
                                                          à 1m 2
                                c 11        2  z 1            1j
                              +     1 − 2tanh (  )                                  (9.23)
                                 2            ω 1     j=1  1 −¯ 1
                                                               τ
                        where γ 1 and ϑ 1 are constants specified by

                            γ 1 = min 2(g 10k 1 − m 1 /2c 11 − 1/4c 12 − 1/4c 13 ),
 1 σ 1 /2,
 a1 σ a1 ,  ,
                                         ∗2
                                                             ∗2
                                                                              ∗
                                  ϑ 1 = σ 1 θ g 10 /4 + 1/2g 10 + σ a1 ε /2g 10 + 0.2785ω 1 ε .
                                         1                   1                1
                        The last term in (9.23) may be positive or negative, which depends on
                        thesizeof z 1. However, since the functions ϕ 1j (x 1 ) are bounded on any
                                                         2
                        compact set C 1 and −1 ≤ 1 − 2tanh (z 1 /ω 1 ) ≤ 1, the last term in (9.23)
                        is bounded. If z 2 and e 1 can be proven to be bounded (to be shown in
                        the next step), k 1 is large (then γ 1 is positive), and c 11, ϑ 1 are small, then
                        according to the extended Lyapunov Theorem, z 1, θ 1, ˜ε 1 are uniformly
                                                                       ˜
                        ultimately bounded (UUB) over the compact set C 1.
                           For a possible large tracking error in the initial control procedure, e.g.,
                                , then it is shown according to Lemma 9.2 that
                        z 1 /∈   z 1
                                                        m 1   à 1m 2
                                                   z 1    e     ϕ (x 1 )
                                                                 1j
                                                 2
                                         1 − 2tanh (  )               ≤ 0.          (9.24)
                                                                 τ
                                                   ω 1        1 −¯ 1
                                                        j=1
                           In this case, the Lyapunov function (9.23) can be rewritten as
                                                                     2
                                                                        2
                                                            2
                                                               2
                                         ˙ V 1 ≤−γ 1V 1 + ϑ 1 + c 12g z + c 13g e .  (9.25)
                                                            11 2     11 1
                                                                            . On the other
                        This can improve the error convergence rate for z 1 /∈   z 1
                                                                   , the system output x 1 is
                        hand, if the tracking error is small, i.e., z 1 ∈   z 1
                        bounded according to z 1 = x 1 −y d . For this case, the last term in (9.23)can
                        be tuned to be small by decreasing ω 1 and c 11.
   141   142   143   144   145   146   147   148   149   150   151