Page 147 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 147

ANDSC of Strict-Feedback Systems With Non-linear Dead-Zone  143


                            Step i (2 ≤ i < n). Consider the definition z i = x i − s i−1,the filter(9.6),
                            and the filter error (9.7), it follows
                                               s i = e i + α i ,  i = 1··· ,n − 1,     (9.26)
                                                     e i
                                               s ˙ i =−  ,  i = 1··· ,n − 1.           (9.27)
                                                     μ i
                            Therefore, from (9.4)and (9.27), it follows

                                     s                                                   s
                             ˙ z i =˙x i −¨ i−1 = f i (¯x i ,0) + h i (¯x i , ¯x i (t − τ ij (t))) + g i (¯x i , ¯x i (t − τ ij (t)))x i+1 −¨ i−1
                                                                            s
                                    = f i (¯x i ,0) + h i (¯x i , ¯x i (t − τ ij (t))) + g i (z i+1 + s i ) −¨ i−1
                                                                                e i−1
                                    = f i (¯x i ,0) + h i (¯x i , ¯x i (t − τ ij (t))) + g i (z i+1 + e i + α i ) +
                                                                                μ i−1
                                                                                       (9.28)
                            The virtual control α i for the i-th subsystem can be specified as


                                                    ˆ
                                                   θ i  T                   z i
                                        α i =−k iz i −  z i   (Z i )  i (Z i ) − ε i tanh  ,  (9.29)
                                                        i
                                                    2                       ω i
                                               ˙   
 i  2  T
                                               ˆ
                                                                       ˆ
                                               θ i =  [z   (Z i )  i (Z i ) − σ i θ i ],  (9.30)
                                                         i
                                                      i
                                                   2
                                                              z i
                                                 ˆ ε i = 
 ai [z i tanh(  ) − σ ai ˆε i ],  (9.31)
                                                 ˙
                                                              ω i
                            where k i > 0, ω i > 0, 
 i > 0, 
 ai > 0and σ i > 0, σ ai > 0 are design parame-
                            ters.
                               Select a Lyapunov-Krasovskii function as
                                                m i
                                       1  2  c i1     e  à im     t  − (t−ς) 2   g i0  2
                                  V i = z +                   e     ϕ (¯x i (ς))dς +  θ ˜ i
                                                                     ij
                                         i
                                       2     2     1 −¯ i  t−τ ij (t)            2
 i
                                                      τ
                                                j=1
                                           1           2
                                                ∗
                                      +       (ε − g i0 ˆε i )                         (9.32)
                                                i
                                         2g i0 
 ai
                            where c i1 > 0 is a constant and g i0 is the lower bounds of g i (·), respectively.
                               Taking the time derivative of V i along (9.28)–(9.31)yields

                                   m i  2                             e i−1
                              ˙ V i ≤  z + z i f i (¯x i ,0) + g i [z i+1 + e i + α i ]+
                                       i
                                  2c i1                              μ i−1
                                       m i   à im
                                    c i1     e  2            g i0  ˙  1
                                                                         ∗
                                                                                ˙
                                                                ˜ ˜
                                  +           ϕ (¯x i ) −  V di +  θ i θ i −  (ε − g i0 ˆε i )ˆε i
                                               ij
                                                                         i
                                    2    1 −¯ i              
 i     
 ai
                                             τ
                                      j=1
                                   m i  2                                g i0  2  T
                                ≤    z + z iQ i (Z i ) + g iz iz i+1 + g iz i α i + g iz ie i −  ˜ z   (Z i )  i (Z i )
                                      i                                    θ i i  i
                                  2c i1                                   2
   142   143   144   145   146   147   148   149   150   151   152