Page 150 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 150

146   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics

                                 σ ng n0     c n1        2  z n       m n e  à nm  2
                                       ˜ ˆ
                               +       θ n θ n +  1 − 2tanh (  )           ϕ (x) −  V dn
                                                                            nj
                                    2        2             ω n     j=1 1 −¯τ n
                                                   z n
                                   ∗
                               − (¯ε − g n0  ˆε n )z n tanh(  ∗                     (9.40)
                                   n                 ) + σ an (¯ε − g n0  ˆε n )ˆε n
                                                            n
                                                   ω n
                                                 c n1  2 z n    m n e  à nm  2  e n−1
                        where Q n (Z n ) = f n (x,0) +  tanh (  )   ϕ (x) +     is an un-
                                                                     nj
                                                 z n    ω n  j=1 1−¯τ n     μ n−1
                                                                                  ∈ R n+2 ,
                        known but well-defined functions of vector Z n =[x,z n ,e n−1 ]∈   Z n
                        and thus estimated by a HONN as Q n (Z n ) = W ∗T  (Z n )+ε n over the com-
                                                                 n
                        pact set  .
                           Consider Assumption 9.1 and the fact θ n (t) ≥ 0,t ≥ 0, ˆε n (t) ≥ 0,t ≥ 0
                                                               ˆ
                        for any non-negative initial conditions, it is readily derived
                                                g n0  θ nz 2
                                                    ˆ
                                             2         n  T                z n
                             g ndz nv ≤−k ng n0  z −        n − g n0  ˆε nz n tanh(  ),  (9.41)
                                             n
                                                         n
                                                   2                       ω n
                                                  ∗ 2
                                              g n0  θ z               1
                                                  n n
                                                       T
                                                                                ∗
                          z nQ n (Z n ) + g n1p|z n | ≤    (Z n )  n (Z n ) +  + |z n | ¯ε .  (9.42)
                                                       n
                                                                                n
                                                 2                   2g n0
                        Moreover, similar to (9.20)–(9.22), itcanalsobeverified that
                                         σ ng n0      σ ng n0  θ ˜ 2  σ ng n0  θ n ∗2
                                                            n
                                               ˜ ˆ
                                              θ n θ n ≤−      +         ,           (9.43)
                                           2             4         4
                                               σ ang n0  ˆε 2  σ an        σ an ¯ε ∗2
                                ∗                    n         ∗       2      n
                           σ an (¯ε − g n0  ˆε n )ˆε n =−  −  (¯ε − g n0 ˆε n ) +  ,  (9.44)
                                                               n
                                n
                                                  2      2g n0             2g n0
                                                         z n
                                                 ∗
                                          ∗
                                                                       ∗
                                         ¯ ε |z n | −¯ε z n tanh(  ) ≤ 0.2785ω n ¯ε .  (9.45)
                                          n      n                     n
                                                         ω n
                        Therefore, one can rewrite (9.40)as
                                                         ˜ 2                           2
                                          m n   2  σ ng n0  θ n  σ an       2   σ ang n0  ˆε n
                                                                   ∗
                          ˙ V n ≤− k ng n0   −  z −        −      (¯ε − g n0  ˆε n ) −
                                                                   n
                                                n
                                          2c n1       4      2g n0                 2
                                  1     σ ng n0  θ n ∗2  σ an ¯ε ∗2
                                                      n
                                                                 ∗
                               +      +         +       + 0.2875¯ε ω n
                                                                 n
                                 2g n0     4       2g n0
                                                    m n

                                 c n1        2  z n     e   à nm  2
                               +     1 − 2tanh (  )         ϕ (x) −  V dn
                                                             nj
                                                          τ
                                 2             ω n     1 −¯ n
                                                    j=1
                                                               m n
                                                                    à nm
                                            c n1        2  z n     e    2
                             ≤− γ nV n + ϑ n +  1 − 2tanh (  )         ϕ (x) −  V dn
                                                                        nj
                                            2             ω n     1 −¯ n
                                                                     τ
                                                               j=1
                                                                                    (9.46)
                        where γ n and ϑ n are positive constants given as

                                   γ n = min 2(g n0k n   − m n /2c n1 ),
 n σ n /2,
 an σ an ,  ,
   145   146   147   148   149   150   151   152   153   154   155