Page 148 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 148

144   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                                 σ ig i0                 z i
                                                                  ∗
                                     ˜ ˆ − (ε − g i0 ˆε i )z i tanh(
                               +     θ i θ i  ∗ i          ) + σ ai (ε − g i0 ˆε i )ˆε i
                                                                  i
                                  2                      ω i
                                                     m i e  à im

                                 c i1        2  z i            2
                               +    1 − 2tanh (  )            ϕ (¯x i ) −  V di     (9.33)
                                                               ij
                                 2             ω i    j=1 1 −¯τ i
                                                                τ
                                                 c i1  2 z i    m i  e im  2  e i−1
                        where Q i (Z i ) = f i (¯x i ,0) +  tanh ( )  ϕ (¯x i ) +  with Z i =
                                                                    ij
                                                 z i    ω i  j=1 1−¯τ i    μ i−1
                        [¯ x i ,z i ,e i−1 ]∈ R i+2  is an unknown but well-defined function and thus
                        approximated by a HONN (9.5)overacompactset   as Q i (Z i ) =
                        W i ∗T   (Z i ) + ε i.
                           Since θ i (t) ≥ 0,t ≥ 0, ˆε i (t) ≥ 0,t ≥ 0 for any non-negative initial con-
                                 ˆ
                        ditions, one can apply the Young’s inequality on the terms g iz i α i , g iz iz i+1,
                        g iz ie i , z iQ i (Z i ) similar to (9.15)–(9.18) and derive the relations on the terms
                            θ i θ i , σ ai (ε − g i0 ˆε i )ˆε i, ε |z i | − ε z i tanh( ) similar to (9.20)–(9.22)in
                         σ i g i0 ˜ ˆ  ∗       ∗       ∗      z i
                          2         i          i       i      ω i
                        terms of positive constants g i1 and c i2 ,c i3. Then following a similar anal-
                        ysis as Step 1,ityields
                                                               ˜ 2
                                       m i   1     1    2  σ ig i0 θ i  σ ai    2
                                                                        ∗
                         ˙ V i ≤− g i0k i −  −  −     z −        −     (ε − g i0 ˆε i )
                                                        i
                                                                        i
                                      2c i1  4c i2  4c i3    4     2g i0
                               σ aig i0 ˆε 2 i  2  2  2 2  σ ig i0 θ i ∗2  1  σ ai ε ∗2
                                                                           i
                             −        + c i2g z  + c i3g e +    +     +       + 0.2785ω i ε ∗ i
                                                    i1 i
                                          i1 i+1
                                  2                         4     2g i0  2g i0
                                                    m i e  à im
                               c i1        2  z i            2
                             +     1 − 2tanh (  )           ϕ (¯x i ) −  V di
                                                             ij
                               2             ω i    j=1 1 −¯τ i
                                           2
                                                     2 2
                           ≤− γ iV i + ϑ i + c i2g z 2  + c i3g e
                                           i1 i+1    i1 i
                                                   m i e   ϕ ((¯x i )
                                                         à im 2
                               c i1        2  z i           ij
                             +     1 − 2tanh (  )                                   (9.34)
                               2             ω i    j=1  1 −¯ i
                                                             τ
                        where γ i and ϑ i are positive constants as

                              γ i = min 2(g i0k i − m i /2c i1 − 1/4c i2 − 1/4c i3 ),
 i σ i /2,
 ai σ ai ,  ,
                                                            ∗2
                                            ∗2
                                                                             ∗
                                   ϑ i = σ ig i0 θ /4 + 1/2g i0 + σ ai ε /2g i0 + 0.2785ω i ε .
                                            i               i                i
                                                                                       or
                        Similar to the discussion in Step 1, for both large or small z i (z i /∈   z i
                               ), if z i+1 and e i can be guaranteed to be bounded (this will be
                        z i ∈   z i
                        guaranteed in the next step), then according to the extended Lyapunov
                        Theorem, z i , ˜ , ˜ε i are UUB for small enough ϑ i, c i1,orlarge γ i on a
                                     θ i
                        compact set C i. This further ensures the boundedness of θ i, ˆε i,and α i.
                                                                          ˆ
   143   144   145   146   147   148   149   150   151   152   153