Page 145 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 145

ANDSC of Strict-Feedback Systems With Non-linear Dead-Zone  141


                            Q 1 (Z 1 ) is well defined everywhere including the point z 1 = 0, thus it can
                            be approximated using HONN (9.5) without encountering the possible
                            singularity problem over a compact set   (i.e., Q 1 (Z 1 ) = W  ∗T   (Z 1 ) + ε 1).
                                                                               1
                                      2
                                        T
                               Since z   (Z 1 )  1 (Z 1 ) ≥ 0and z 1 tanh(z 1 /ω 1 ) ≥ 0 for all z 1 ∈ R, the
                                      1  1
                                ˆ
                            fact θ 1 (t) ≥ 0,t ≥ 0, ˆε 1 (t) ≥ 0,t ≥ 0 holds for any bounded initial conditions
                            θ 1 (0) ≥ 0, ˆε 1 (0) ≥ 0 based on adaptive laws (9.10)–(9.11). Consequently,
                            ˆ
                            one can obtain the following inequalities:
                                               	        ˆ θ 1  T
                                g 1z 1 α 1  = g 1z 1 −k 1z 1 − z 1   (Z 1 )  1 (Z 1 ) − ε 1 tanh(  z 1  )
                                                        2    1                   ω 1     ,
                                                        ˆ
                                                  2   g 10 θ 1 2  T
                                        ≤  −g 10k 1z −   z   (Z 1 )  1 (Z 1 ) − g 10 ˆε 1z 1 tanh(  z 1  )
                                                  1    2  1  1                       ω 1
                                                                                       (9.15)
                                   z 1Q 1 (Z 1 ) = z 1W 1 ∗T    1 (Z 1 ) + z 1 ε 1
                                                  ∗ 2
                                              g 10 θ z  T             1
                                                  1 1
                                                                               ∗
                                            ≤          (Z 1 )  1 (Z 1 ) +  + |z 1 |ε ,  (9.16)
                                                                               1
                                                      1
                                                 2                  2g 10
                                                          z 2 1    2  2
                                                  g 1z 1z 2 ≤  + c 12g z ,             (9.17)
                                                                   11 2
                                                          4c 12
                                                           z 2 1   2  2
                                                  g 1z 1e 1 ≤  + c 13g e               (9.18)
                                                                   11 1
                                                          4c 13
                            where g 11 is the upper bound of the control function g 1 (·) and c 12 ,
                            c 13 > 0 are constants. Moreover, the time derivative of V w1 + V a1 along
                            (9.10)–(9.11) can be derived as
                                            g 10  ˙   1
                                               ˜ ˜
                                  ˙ V w1 + ˙ V a1 =  θ 1 θ 1 −  ∗  ˙
                                                        (ε − g 10 ˆε 1 )ˆε 1
                                                          1
                                            
 1      
 a1
                                               g 10  2  T           σ 1g 10
                                                                         ˜ ˆ
                                                  ˜ z   (Z 1 )  1 (Z 1 ) +
                                          ≤−     θ 1 1  1                θ 1 θ 1       (9.19)
                                               2                      2
                                                               z 1
                                                                         ∗
                                                ∗
                                            − (ε − g 10 ˆε 1 )z 1 tanh(  ) + σ a1 (ε − g 10 ˆε 1 )ˆε 1
                                                1
                                                                        1
                                                               ω 1
                            It is easy to verify the following relations:
                                                          σ 1g 10 θ ˜ 2  σ 1g 10 θ ∗2
                                              σ 1g 10          1        1
                                                   ˜ ˆ
                                                  θ 1 θ 1 ≤−     +        ,            (9.20)
                                               2             4        4
                                                   σ a1g 10 ˆε 2  σ a1       σ a1 ε ∗2
                                     ∗                  1         ∗       2      1
                                σ a1 (ε − g 10 ˆε 1 )ˆε 1 =−  −  (ε − g 10 ˆε 1 ) +  ,  (9.21)
                                    1                             1
                                                     2      2g 10             2g 10
                                                            z 1
                                                                           ∗
                                             ∗
                                                     ∗
                                            ε |z 1 | − ε z 1 tanh(  ) ≤ 0.2785ω 1 ε .  (9.22)
                                             1       1                     1
                                                            ω 1
   140   141   142   143   144   145   146   147   148   149   150