Page 144 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 144

140   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                                                          z 1
                                            ˙ ˆ ε 1 = 
 a1 [z 1 tanh(  ) − σ a1 ˆε 1 ],  (9.11)
                                                          ω 1
                        where k 1 > 0, ω 1 > 0, 
 1 > 0, 
 a1 > 0and σ 1 > 0, σ a1 > 0 are design pa-
                        rameters.
                           Consider the following Lyapunov-Krasovskii function


                               V 1 = V c1 + V d1 + V w1 + V a1
                                     1 2      m 1 e  à 1m     t  − (t−ς) 2
                                  = z +   c 11             e      ϕ (x 1 (ς))dς     (9.12)
                                     2 1  2   j=1 1−¯τ 1  t−τ 1j (t)  1j
                                       g 10 ˜ 2  1  ∗       2
                                         θ +
                                    +  2
 1 1  2g 10 
 a1  (ε − g 10 ˆε 1 )
                                                    1
                        where c 11 > 0,  > 0 are positive parameters, g 10 is the lower bound of
                        g 1 (·). The scalars ˜ε i = ε − ε i and θ i = θ − θ i are parameter errors with
                                                        ˜
                                             ∗
                                                            ∗
                                                                ˆ
                                             i
                                                            i
                                   ∗
                         ∗
                        θ = W  ∗T W and ε being bounded positive scalars of (9.5).
                                          ∗
                         i     i   i      i
                           In view of the fact τ ij (t) ≤ τ im, ˙τ ij (t) ≤¯τ i < 1, then it follows

                                   c 11    m 1 e  à 1m  2          − à 1j (t) 2
                          ˙ V d1  =            ϕ (x 1 (t)) − (1 −¨τ 1j (t))e  ϕ (x 1 (t − τ 1j (t)))
                                   2   j=1 1−¯τ 1  1j                     1j
                                    c 11      m 1 e  à 1m     t  − (t−ς) 2
                                  −                    e      ϕ (x 1 (ς))dς
                                     2    j=1 1−¯τ 1  t−τ 1j (t)  1j
                                                                                    (9.13)
                        Consider Assumption 9.2 and (9.8) and use Young’s inequality, then the
                        time derivative of V c1 + V d1 can be given as

                          ˙ V c1 + ˙ V d1 ≤ z 1 f 1 (x 1 ,0) + g 1 [z 2 + α 1 + e 1 ]+ h 1 (x 1 ,x 1 (t − τ 1j (t))) −¨y d
                                       m 1      à 1m
                                   c 11     e    2        2
                                  +             ϕ (x 1 ) − ϕ (x 1 (t − τ 1j )) −  V d1
                                                 1j
                                                         1j
                                    2      1 −¯ 1
                                              τ
                                      j=1

                                     m 1  2
                                  ≤     z + z 1 f 1 (x 1 ,0) −¨y d
                                         1
                                    2c 11
                                                  m 1 e  à 1m
                                    c 11  2  z 1            2
                                  +    tanh (  )           ϕ (x 1 ) + g 1z 1z 2
                                                            1j
                                    z 1     ω 1   j=1 1 −¯τ 1
                                                                         m 1 e  à 1m

                                                    c 11        2  z 1             2
                                  + g 1z 1 α 1 + g 1z 1e 1 +  1 − 2tanh (  )      ϕ (x 1 )
                                                                                   1j
                                                    2             ω 1    j=1 1 −¯τ 1
                                  −  V d1
                                     m 1  2
                                  =
                                        z + z 1Q 1 (Z 1 ) + g 1z 1z 2 + g 1z 1 α 1 + g 1z 1e 1
                                         1
                                    2c 11

                                                         m 1 e  à 1m
                                    c 11        2  z 1             2
                                  +     1 − 2tanh (  )            ϕ (x 1 ) −  V d1  (9.14)
                                                                   1j
                                     2            ω 1     j=1 1 −¯τ 1
                                                      c 11  2 z 1    m 1 e  à 1m  2
                        where Q 1 (Z 1 ) = f 1 (x 1 ,0) −¨y d +  tanh (  )  ϕ (x 1 ) is an un-
                                                                           1j
                                                      z 1     ω 1  j=1 1−¯τ 1
                                                              3
                        known function of Z 1 =[x 1 ,z 1 , ˙y d ]∈ R . According to Lemma 9.1,
   139   140   141   142   143   144   145   146   147   148   149