Page 278 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 278

280   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                                                  T          
  ∞
                        at the sampling interval h =  , X kT (z) =  x[kT]= X kT−h (z).Asdis-
                                                 n+1            k=0
                        cussed in [8], G kT−h (z) can be expressed as:
                                                 b 0 + b 1z −1  + ... + b n−1z −(n−1)
                                      G kT−h (z) =                         .       (18.12)
                                                1 +¯a 1z −1  +¯a 2z −2  + ... +¯a nz −n
                           Hence, G kT (z) and G kT−h (z) have the same denominators. Conse-
                        quently, one may have

                                        G kT−h (z)X kT−h (z) − G kT (z)X kT (z) = 0  (18.13)

                        which further implies

                                                        ¯
                                         θ kT−h (z)Y kT (z) − θ kT (z)Y kT−h (z) = 0  (18.14)
                                         ¯
                                                 T
                                                                             T
                                               ¯
                                       ¯ ¯
                               ¯
                                                       ¯
                        where θ kT (z) =[b 1 ,b 2 ,...,b n ] and θ kT−h (z) =[b 0 ,b 1 ,...,b n−1 ] .
                           To facilitate identification, we rewrite Eq. (18.14)as
                                                           T
                                                  y[kT]= E (h)ϕ                    (18.15)
                        where
                             ⎧
                             ⎪E(h)   =[−y[kT − h],...,−y[kT − (n − 1)h],y[kT − 2h],...,
                             ⎪
                             ⎨
                                                       T
                                        y[kT − (n + 1)h]]                          .
                             ⎪
                             ⎪                                  T
                               ϕ     =   [b 1 ,b 2 ,...,b n ,b 1 ,b 2 ,...,b n−1 ]
                             ⎩          1 ¯ ¯     ¯
                                       b 0
                        Then by assuming b 0  = 0 at each k, the RLS algorithm can be used to
                        estimate ϕ as
                              ⎧
                                                              T
                              ⎪ ˆϕ(k)  =ˆϕ(k − 1) + K(k)[y(k) − E (k) ˆϕ(k − 1)]
                              ⎪
                              ⎨
                                                      T
                                K(k)   = P(k − 1)E(k)[E (k)P(k − 1)E(k) +  1  ] −1  (18.16)
                                                                       λ(k)
                              ⎪
                                P(k)   =[I − K(k)E (k)]P(k − 1)
                              ⎪                   T
                              ⎩
                        where λ> 0 is the weight of the algorithm.
                           Note that b i may contain a scalar factor as a result of normalizing b 0 = 1
                        ([21]). Without loss of generality, we set b 0 = 1, and the regularized param-
                        eters of numerator can be obtained from (18.16).
                        18.3.3 Estimation of Preisach Non-linearity
                        After transfer function G(z) is identified, the unmeasurable variable x(k)
                        can be computed by using G(z) and y(k), and thus x(k) can be used to
   273   274   275   276   277   278   279   280   281   282   283