Page 73 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 73

64   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                                           θ = θ − θ are parameter errors between the bounded
                        where ˜ε = ε − ε and ˜     ˆ
                                   ∗
                                               T
                        constants ε = ε N /g, θ =     and their estimations ˆε, θ.
                                                                        ˆ
                                  ∗
                           The derivative of V can be obtained as
                                                      g      g
                                        T                ˙

                                                        ˜ ˜
                                ˙ V ≤ sr     + ε + gu +  θθ +  ˜ ε˜ε ˙
                                                              a
                                                                         2 2
                                                          gr ˆ 2       grˆε s
                                                            θs
                                       T               2        T
                                  ≤ sr    + rε N |s| − k 1gs −      −               (4.22)
                                                           2η 2       ˆ ε|s|+ σ 1
                                           s   T
                                         	  2
                                    − gθr        − σ 2 θ − g˜εr |s| − σ 3 ˆε
                                                       ˆ
                                       ˜
                                          2η 2
                        Applying Young’s inequality with η> 0, one can obtain the following in-
                        equalities:
                                                     grθs 2      r M η 2
                                               T           T
                                            sr    ≤          +                      (4.23)
                                                      2η 2        2g
                                                     σ 2gr M θ ˜ 2  σ 2gr M θ 2
                                               ˜ ˆ
                                           σ 2grθθ ≤−        +                      (4.24)
                                                        2         2
                                                     σ 3gr M ˜ε 2  σ 3gr M ε 2 N
                                           σ 3gr˜εˆε ≤−     +                       (4.25)
                                                        2         2
                        Moreover, the fact θ(t), ˆε(t) ≥ 0,t ≥ 0 holds for any initial conditions
                                           ˆ
                         ˆ
                        θ(0), ˆε(0) ≥ 0, and 0 ≤  ab  ≤ a,∀a,b > 0 is true. Then one can rewrite
                                              a+b
                        (4.22)as
                                                              2 2
                                     r M η 2                rgˆε s
                                  2           ∗
                         ˙ V ≤−k 1gs +    + rgε |s| − rg˜ε |s| −  + σ 2gr ˜ ˆ + σ 3gr˜εˆε
                                                                        θ 1 θ 1
                                      2g                   ˆ ε|s|+ σ 1
                                     σ 2gr M θ ˜ 2  σ 3gr M ˜ε 2  σ 2gr M θ 2  σ 3gr M ε 2  r M η 2
                                  2                                     N
                           ≤−k 1gs −         −        +         +         +      + σ 1gr M
                                        2         2        2         2       2g
                           ≤−γV + ϑ,                                                (4.26)
                        where γ and ϑ are positive constants

                                           γ = min 2k 1g, r M σ 2 ,  ar M σ 3 ,
                                                                2
                                                     2
                                                                         2
                                    ϑ = σ 1gr M + σ 2gr M θ /2 + σ 3gr M ε /2 + r M η /2g.
                                                                N
                        Then according to Lyapunov theorem, V is uniformly ultimately bounded
                        and thus the errors s, θ, ˜ε are bounded. This further guarantees the bound-
                                           ˜
                        edness of the transformed error z 1 and ˙z 1 according to (4.13). Moreover,
                                  T
                                       ∗
                        since θ =    , ε = ε N /g are bounded, the adaptive parameters θ, ˆε are all
                                                                                ˆ
                        bounded. Consequently, the control signal u is bounded.
   68   69   70   71   72   73   74   75   76   77   78