Page 220 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 220

200               2.5.4. Enantioselective Dihydroxylation of Alkenes

     CHAPTER 2             Osmium tetroxide is a stereospecific oxidant that produces diols from alkenes
     Stereochemistry,  by a syn-addition. 162  Currently, the reaction is carried out using a catalytic amount
     Conformation,     of OsO , with a stoichiometric oxidant such as t-butyl hydroperoxide, 163  potassium
     and Stereoselectivity   4
                       ferricyanide, 164  or morpholine-N-oxide. 165  Osmium tetroxide oxidations can be highly
                       enantioselective in the presence of chiral ligands. The most highly developed ligands
                       are derived from the cinchona alkaloids dihydroquinine (DHQ) and dihydroquinidine
                       (DHQD). 166  The most effective ligands are dimeric derivatives of these alkaloids such
                       as  DHQ  -PHAL and  DHQD  -DDPYR,  167  in which the alkaloid units are linked
                               2
                                                  2
                       by heterocyclic ethers. These ligands not only induce high enantioselectivity, but they
                       also accelerate the reaction. 168  Optimization of the reaction conditions permits rapid
                       and predictable dihydroxylation of many types of alkenes. 169  The premixed catalysts
                       are available commercially and are referred to by the trade names AD-mix TM .



                                  N                                        Ph
                                                 N                  N     N  N
                                    O       O                                      N
                                      NN                               O       O
                       CH O                          OCH 3  CH O           Ph
                         3
                                  N           N              3                           OCH 3
                                                                     N
                                    (DHQ) -PHAL                                  N
                                        2
                                                                            -DPPYR
                                                                      (DHQD) 2


                           From extensive studies, a consensus has been reached about some aspects of the
                       catalytic mechanism and enantioselectivity: (1) The amine ligands, in particular the
                       quinuclidine nitrogen, are important in activating and stabilizing the osmium interme-
                       diate. 170  (2) From the kinetics of the reaction, it is also evident that the binding of the

                       162
                          M. Schroeder, Chem. Rev., 80, 187 (1980).
                       163	  K. B. Sharpless and K. Akashi, J. Am. Chem. Soc., 98, 1986 (1976); K. Akashi, R. E. Palermo, and
                          K. B. Sharpless, J. Org. Chem., 43, 2063 (1978).
                       164	  M. Minato, K. Yamamoto and J. Tsuji, J. Org. Chem., 55, 766 (1990); K. B. Sharpless, W. Amberg,
                          Y. L. Bennani, G. A. Crispino, J. Hartung, K.-S. Jeong, H.-L. Kwong, K. Morikawa, Z.-M. Wang, D. Xu,
                          and X.-L. Zhang, J. Org. Chem., 57, 2768 (1992); J. Eames, H. J. Mitchell, A. Nelson, P. O’Brien, S.
                          Warren, and P. Wyatt, Tetrahedron Lett., 36, 1719 (1995).
                       165
                          V. VanRheenen, R. C. Kelly, and D. Y. Cha, Tetrahedron Lett., 1973 (1976).
                       166	  H. C. Kolb, M. S. Van Nieuwenhze, and K. B. Sharpless, Chem. Rev., 94, 2483 (1994).
                       167	  G. A. Crispino, K.-S. Jeong, H. C. Kolb, Z.-M. Wang, D. Xu, and K. B. Sharpless, J. Org. Chem.,
                          58, 3785 (1993); G. A. Crispino, A. Makita, Z.-M. Wang, and K. B. Sharpless, Tetrahedron Lett., 35,
                          543 (1994); K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K. S. Jeong,
                          H.-C. Kwong, K. Morikawa, Z. M. Wang, D. Xu, and X. L. Zhang, J. Org. Chem., 57, 2768 (1992);
                          W. Amberg, Y. L. Bennani, R. K. Chadha, G. A. Crispino, W. D. Davis, J. Hartung, K. S. Jeong,
                          Y. Ogino, T. Shibata, and K. B. Sharpless, J. Org. Chem., 58, 844 (1993); H. Becker, S. B. King,
                          M. Taniguchi, K. P. M. Vanhessche, and K. B. Sharpless, J. Org. Chem., 60, 3940 (1995).
                       168
                          P. G. Anderson and K. B. Sharpless, J. Am. Chem. Soc., 115, 7047 (1993).
                       169	  H.-L. Kwong, C. Sorato, Y. Ogino, H. Chen, and K. B. Sharpless, Tetrahedron Lett., 31, 2999 (1990);
                          T. Gobel and K. B. Sharpless, Angew. Chem. Int. Ed. Engl., 32, 1329 (1993).
                       170
                          D. W. Nelson, A. Gypser, P. T. Ho, H. C. Kolb, T. Kondo, H.-L. Kwong, D. V. McGrath, A. E. Rubin,
                          P.-O. Norrby, K. P. Gable, and K. B. Sharpless, J. Am. Chem. Soc., 119, 1840 (1997).
   215   216   217   218   219   220   221   222   223   224   225