Page 164 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 164

136                                       Scheme 2.10. (Continued)

      CHAPTER 2               9 i        O                            O
                                   CH 3       CH 3
                                                               CH 3        CH 3
      Reactions of Carbon
      Nucleophiles with           HO              CH 3                         CH 3
      Carbonyl Compounds                  O             TiCl 4  HO    O
                                                  CH 3  –78°                   CH 3
                                       O  O                         O
                                                              HO   CH 3           65%
                                            CH   OTMS                  H
                                         CH 3
                                                                           O
                              a. J. English and G. W. Barber, J. Am. Chem. Soc., 71, 3310 (1949).
                              b. A. I. Meyers and N. Nazarenko, J. Org. Chem., 38, 175 (1973).
                              c. K. Wiesner, V. Musil, and K. J. Wiesner, Tetrahedron Lett., 5643 (1968).
                              d. G. A. Kraus, B. Roth, K. Frazier, and M. Shimagaki, J. Am. Chem. Soc., 104, 1114 (1982).
                              e. K. Yamada, H. Iwadare, and T. Mukaiyama, Chem. Pharm. Bull., 45, 1898 (1997).
                              f. J. K. Tagat, M. S. Puar, and S. W. McCombie, Tetrahedron Lett., 37, 8463 (1996).
                              g. M. D. Taylor, G. Minaskanian, K. N. Winzenberg, P. Santone, and A. B. Smith, III, J. Org.
                                Chem., 47, 3960 (1962).
                              h. A. Armstrong, T. J. Critchley, M. E. Gourdel-Martin, R. D. Kelsey, and A. A. Mortlock, J.
                                Chem. Soc., Perkin Trans. 1, 1344 (2002).
                               i. A. B. Smith, III, A. T. Lupo, Jr., M. Ohba, and K. Chen, J. Am. Chem. Soc., 111, 6648 (1989).

                       vinyl ketone or a similar enone. This is followed by cyclization by an intramolecular
                       aldol addition. Dehydration usually occurs to give a cyclohexenone derivative.

                             O
                                             conjugate
                          CH CCH  CH 2        addition  H C  CH 2    aldol addition
                                                       2
                            3
                                                                        and
                                                       C    O        dehydration  O
                                                     O
                                   – O                   CH 3
                       Other  , -unsaturated enones can be used, but the reaction is somewhat sensitive to
                       substitution at the  -carbon and adjustment of the reaction conditions is necessary. 172
                           Scheme 2.11 shows some examples of Robinson annulation reactions. Entries 1
                       and 2 show annulation reactions of relatively acidic dicarbonyl compounds. Entry 3
                       is an example of use of 4-(trimethylammonio)-2-butanone as a precursor of methyl
                       vinyl ketone. This compound generates methyl vinyl ketone in situ by  -elimination.
                       The original conditions developed for the Robinson annulation reaction are such
                       that the ketone enolate composition is under thermodynamic control. This usually
                       results in the formation of product from the more stable enolate, as in Entry 3.
                       The C(1) enolate is preferred because of the conjugation with the aromatic ring. For
                       monosubstituted cyclohexanones, the cyclization usually occurs at the more-substituted
                       position in hydroxylic solvents. The alternative regiochemistry can be achieved by
                       using an enamine. Entry 4 is an example. As discussed in Section 1.9, the less-
                       substituted enamine is favored, so addition occurs at the less-substituted position.
                           Conditions for kinetic control of enolate formation can be applied to the Robinson
                       annulation to control the regiochemistry of the reaction. Entries 5 and 6 of Scheme 2.11
                       are cases in which the reaction is carried out on a preformed enolate. Kinetic

                       171   E. D. Bergmann, D. Ginsburg, and R. Pappo, Org. React., 10, 179 (1950); J. W. Cornforth and
                          R. Robinson, J. Chem. Soc., 1855 (1949); R. Gawley, Synthesis, 777 (1976); M. E. Jung, Tetrahedron,
                          32, 3 (1976); B. P. Mundy, J. Chem. Ed., 50, 110 (1973).
                       172
                          C. J. V. Scanio and R. M. Starrett, J. Am. Chem. Soc., 93, 1539 (1971).
   159   160   161   162   163   164   165   166   167   168   169