Page 834 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 834

810                              CH 2  COC H  +  (CH ) SiCl  CH 2  COC H
                                                        3 3
                                               2 5
                                                                          2 5
                                            Li                         Si(CH )
      CHAPTER 9                                                            3 3          Ref. 67
      Carbon-Carbon
      Bond-Forming Reactions
      of Compounds of Boron,  Metallation of alkenes with n-BuLi-KOC CH   provides a route that is stereoselective
                                                            3 3
      Silicon, and Tin  for Z-allylic silanes. 68  (See p. 632 for discussion of this metallation method.)
                                                                       R
                                            n-BuLi   R   K
                                                                                  )
                            RCH CH  CH 2                     (CH ) SiCl      Si(CH 3 3
                                                                3 3
                               2
                                                 )
                                          KOC(CH 3 3
                                                                           50 – 75% yield
                              R = alkyl                                    Z:E = 95 – 98:5 – 2
                       These conditions are also applicable to functionalized systems that are compatible with
                       metallation by this “superbase.” 69
                            HO              CH 3  1) n-BuLi  HO            CH 3
                                                 KOC(CH )
                                                       3 3
                                   CH 3   CH 3   2) (CH ) SiCl    CH 3   CH Si(CH )  38%
                                                                            2
                                                                                 3 3
                                                      3 3
                           Silicon substituents can be introduced into alkenes and alkynes by hydrosilation. 70
                       This reaction, in contrast to hydroboration, does not occur spontaneously, but it can be
                       carried out in the presence of catalysts such as H PtCl , hexachloroplatinic acid. Other
                                                                  6
                                                              2
                       catalysts are also available. 71  Halosilanes are more reactive than trialkylsilanes. 72
                                                                       Cl
                                                    CH SiCl H
                                                          2
                                                      3
                                               CH 2                 CH 2 SiCH 3
                                                     H 2 PtCl 6
                                                                       Cl
                           Alkenylsilanes can be made by Lewis acid–catalyzed hydrosilation of alkynes.
                                                                73
                       Both AlCl and C H AlCl are effective catalysts. The reaction proceeds by net anti
                               3      2  5  2
                       addition, giving the Z-alkenylsilane. The reaction is regioselective for silylation of the
                       terminal carbon.
                                                                  PhCH     Si(C H )
                                                            AlCl 3     2      2 5 3
                                  PhCH C  CH   +  (C H ) SiH
                                      2
                                                    2 5 3
                                                                      H    H

                        67   R. F. Cunico and C.-P. Kuan, J. Org. Chem., 50, 5410 (1985).
                        68
                          O. Desponds, L. Franzini, and M. Schlosser, Synthesis, 150 (1997).
                        69
                          E. Moret, L. Franzini, and M. Schlosser, Chem. Ber., 130, 335 (1997).
                        70   J. L. Speier, Adv. Organomet. Chem., 17, 407 (1979); E. Lukenvics, Russ. Chem. Rev. (Engl. Transl.),
                          46, 264 (1977); N. D. Smith, J. Mancuso, and M. Lautens, Chem. Rev., 100, 3257 (2000); M. Brunner,
                          Angew. Chem. Int. Ed. Engl., 43, 2749 (2004); B. M. Trost and Z. T. Ball, Synthesis, 853 (2005).
                        71
                          A. Onopchenko and E. T. Sabourin, J. Org. Chem., 52, 4118 (1987). H. M. Dickens, R. N. Hazeldine,
                          A. P. Mather, and R. V. Parish, J. Organomet. Chem., 161, 9 (1978); A. J. Cornish and M. F. Lappert,
                          J. Organomet. Chem., 271, 153 (1984).
                        72   T. G. Selin and R. West, J. Am. Chem. Soc., 84, 1863 (1962).
                        73
                          N. Asao, T. Sudo, and Y. Yamamoto, J. Org. Chem., 61, 7654 (1996); T. Sudo, N. Asoa, V. Gevorgyan,
                          and Y. Yamamoto, J. Org. Chem., 64, 2494 (1999).
   829   830   831   832   833   834   835   836   837   838   839