Page 832 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 832

808                                       Scheme 9.3. (Continued)

      CHAPTER 9         a. R. W. Hoffmann and H.-J. Zeiss, J. Org. Chem., 46, 1309 (1981).
                        b. W. R. Roush and A. E. Walts, Tetrahedron Lett., 26, 3427 (1985); W. R. Roush, M. A. Adam, and D. J. Harris, J. Org.
      Carbon-Carbon      Chem., 50, 2000 (1985).
      Bond-Forming Reactions  c. Y. Yamamoto, K. Maruyama, T. Komatsu, and W. Ito, J. Org. Chem., 51, 886 (1986).
      of Compounds of Boron,  d. Y. Yamamoto, H. Yatagai, and K. Maruyama, J. Am. Chem. Soc., 103, 3229 (1981).
      Silicon, and Tin  e. W. R. Roush, M. R. Michaelides, D. F. Tai, and W. K. M. Chong, J. Am. Chem. Soc., 109, 7575 (1987).
                        f. C. Hertweck and W. Boland, Tetrahedron Lett., 53, 14651 (1997).
                        g. H. C. Brown, R. S. Randad, K. S. Bhat, M. Zaidlewicz, and U. S. Racherla, J. Am. Chem. Soc., 112, 2389 (1990).
                        h. R. W. Hoffmann, E. Haeberlin, and T. Rolide, Synthesis, 207 (2002).
                        i. L. K. Truesdale, D. Swanson, and R. C. Sun, Tetrahedron Lett., 26, 5009 (1985).
                        j. W. R. Roush, A. E. Walts, and L. K. Hoong, J. Am. Chem. Soc., 107, 8186 (1985).
                        k. Y. Yamamoto, S. Hara, and A. Suzuki, Synlett, 883 (1996).
                        l. W. R. Roush, J. A. Straub, and M. S. Van Nieuwenhze, J. Org. Chem., 56, 1636 (1985).
                       m. P. G. M. Wuts and S. S. Bigelow, J. Org. Chem., 53, 5023 (1988).
                        n. H. C. Brown, P. K. Jadhav, and K. S. Bhat, J. Am. Chem. Soc., 110, 1535 (1988).
                        o. M. Z. Hoemann, K. A. Agrios, and J. Aube, Tetrahedron, 53, 11087 (1997).
                        p. K. C. Nicolaou, M. E. Bunnage, and K. Koide, Chem. Eur. J., 1, 454 (1995).
                        q. A. L. Smith, E. N. Pitsinos, C.-K. Hwang, Y. Mizuno, H. Saimoto, G. R. Scarlato, T. Suzuki, and K. C. Nicolaou, J.
                         Am. Chem. Soc., 115, 7612 (1993).
                        r. T. Sunazuka, T. Nagamitsu, K. Matsuzaki, H. Tanaka, S. Omura, and A. B. Smith, III, J. Am. Chem. Soc., 115,
                         5302 (1993).

                       demonstrate the high diastereoselectivity of the allylboration reaction. Entry 3 examines
                       the facial selectivity of glyceraldehyde acetonide toward the achiral reagents derived
                       from butenyl pinacol borane. It was found that the reaction with the Z-2-butenyl
                       derivative is highly enantioselective, the E-isomer was much less so. It was suggested
                       that steric interaction of the E-methyl group with the dioxolane in the expected TS
                       ring led to involvement of a second transition structure.



                                                                              H   O
                                      O                       O                       O
                              O   H                   O    H           CH 3        B
                                      B  O                     B  O             O
                              O     O                  O     O             O
                               H                    CH 3
                                                                              O
                                 CH 3                     H
                                                             two competing transition
                              strongly favored
                              for Z- boronate                structures for E - boronate
                       Entry 4 shows the reaction of 9-(E-2-butenyl)-9BBN with methyl pyruvate. This
                       reaction is not very stereoselective, which is presumably due to a modest preference
                       for the orientation of the methyl and methoxycarbonyl groups in the TS. Only use of
                       an extremely sterically demanding pyruvic ester achieved high diastereoselectivity.


                                            CH 3                   CO R
                                                                      2
                                     CH 3        B          CH 3        B
                                       RO C   O                 CH 3  O
                                          2
                                        R               product ratio
                                        CH 3          73          27
                                        Ph            80          20
                                        2,6-diMePh    75          25
                                                     100
                                        2,4,6-tri-t-BuPh          0
   827   828   829   830   831   832   833   834   835   836   837