Page 187 - Advanced Thermodynamics for Engineers, Second Edition
P. 187

174    CHAPTER 8 EQUATIONS OF STATE





             8.6 PROBLEMS

             P8.1 The Dieterici equation for a pure substance is given by
                                                    <T     a
                                                p ¼     e    <Tv
                                                   v   b

                  Determine
                  (a) the constants a and b in terms of the critical pressure and temperature;
                  (b) the compressibility factor at the critical condition;
                  (c) the law of corresponding states.
                         2 2
                       4< T c     <T c                     T R               1
                   a ¼     2  ; b ¼  2  ; z c ¼ 0:2707; p R ¼    exp 2 1
                        p c e     p c e                 ð2v R   1Þ         v R T R

                                       vc v
             P8.2 Derive expressions for    for substances obeying the following laws:
                                       vv  T
                                 a
                          <T
                  (a) p ¼     e <Tv
                          v   b
                          <T     a
                  (b) p ¼         2
                          v   b  Tv
                          <T       a      c
                  (c) p ¼              þ  3 :
                          v   b  vðv   bÞ  v
                  Discuss the physical implication of the results.

                       2
                     pa        2a
                          ;       ;0
                               2 2
                     2 2 3
                   < v T      v T
             P8.3 The difference of specific heats for an ideal gas, c p;m   c v;m ¼<. Evaluate the difference in
                  specific heats for gases obeying (1) the van der Waals and (2) the Dieterici equations of state.
                  Comment on the results for the difference in specific heat for these gases compared with the
                  ideal gas.
                  " ,                !#
                                    2
                            2aðv   bÞ
                   <     1        3
                              <Tv

             P8.4 Derive an expression for the law of corresponding states for a gas represented by the following
                  expression:
                                                    <T    a
                                               p ¼         2 :
                                                   v   b  Tv
   182   183   184   185   186   187   188   189   190   191   192