Page 106 - Advanced engineering mathematics
P. 106

86     CHAPTER 3  The Laplace Transform



                         EXAMPLE 3.7
                                 Compute

                                                                     3s − 1
                                                                −1
                                                               L              .
                                                                    2
                                                                    s − 6s + 2
                                 Follow the strategy of Example 3.6. Manipulate F(s) to a function of s − a for some a:
                                                        3s − 1      3s − 1
                                                                =
                                                                       2
                                                       2
                                                      s − 6s + 2  (s − 3) − 7
                                                                  3(s − 3) + 8
                                                                =
                                                                  (s − 3) − 7
                                                                        2
                                                                   3(s − 3)       8
                                                                =           +
                                                                                    2
                                                                       2
                                                                  (s − 3) − 7  (s − 3) − 7
                                                                = G(s − 3) + K(s − 3)
                                 where
                                                                 3s              8
                                                         G(s) =      and K(s) =     .
                                                                s − 7          s − 7
                                                                2
                                                                                2
                                 By equation (3.5),

                                                     3s − 1
                                                −1               −1            −1
                                               L              = L [G(s − 3)]+ L [K(s − 3)]
                                                    2
                                                    s − 6s + 2
                                                                 3t  −1       3t  −1
                                                              = e L [G(s)]+ e L [K(s)]
                                                                        3s              8

                                                                 3t  −1         3t  −1
                                                              = e L          + e L
                                                                        2
                                                                       s − 7          s − 7
                                                                                       2
                                                                        √      8        √
                                                              = 3e cosh( 7t) + √ e sinh( 7t).
                                                                  3t
                                                                                  3t
                                                                                7
                                 3.3.2 The Heaviside Function and Pulses
                                   Functions having jump discontinuities are efficiently treated by using the unit step function,
                                   or Heaviside function H, defined by

                                                                     0for t < 0
                                                              H(t) =
                                                                     1for t ≥ 0.



                                    H is graphed in Figure 3.8. We will also use the shifted Heaviside function H(t − a) of
                                 Figure 3.9. This is the Heaviside function shifted a units to the right:

                                                                       0for t < a
                                                            H(t − a) =
                                                                       1for t ≥ a.





                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

                                   October 14, 2010  14:14   THM/NEIL   Page-86         27410_03_ch03_p77-120
   101   102   103   104   105   106   107   108   109   110   111