Page 111 - Advanced engineering mathematics
P. 111

3.3 Shifting and the Heaviside Function  91


                                        First apply L to the differential equation, using equations (3.1) and (3.3):
                                                                       2


                                                       L[y ]+ 4L[y]=[s − sy(0) − y (0)]Y(s) + 4Y(s)
                                                                                     2
                                                                      2
                                                                   = s Y(s) + 4Y(s) = (s + 4)Y(s) = L[ f ].
                                        To compute L[ f ], use the second shifting theorem. Since f (t) = H(t − 3)t, we can write
                                                             L[ f ]= L[H(t − 3)t]
                                                                 = L[H(t − 3)(t − 3 + 3)]
                                                                 = L[H(t − 3)(t − 3)]+ 3L[H(t − 3)]
                                                                   e −3s  3e −3s
                                                                 =     +     .
                                                                    s 2    s
                                        In summary, we have
                                                                         1      3      3s + 1
                                                              2             −3s   −3s        −3s
                                                            (s + 4)Y(s) =  e  + e    =      e  .
                                                                         s 2    s        s  2
                                        The transform of the solution is therefore
                                                                             3s + 1
                                                                     Y(s) =        e −3s .
                                                                            2
                                                                           s (s + 4)
                                                                               2
                                        The solution is the inverse transform of Y(s). To take this inverse, use a partial fractions
                                        decomposition, writing
                                                                   3s + 1   A   B   Cs + D
                                                                          =   +   +        .
                                                                    2
                                                                                      2
                                                                 s (s + 4)  s   s  2  s + 4
                                                                  2
                                        After solving for A, B,C, and D, we obtain
                                                               3s + 1
                                                       Y(s) =         e −3s
                                                              2
                                                                 2
                                                              s (s + 4)
                                                              3 1     3  s        1 1      1  1
                                                           =    e −3s  −    e −3s  +  e  −3s  −  e −3s .
                                                                                             2
                                                                        2
                                                              4 s     4 s + 4     4 s 2    4 s + 4
                                        Now apply the second shifting theorem to write the solution
                                                               3          3
                                                         y(t) = H(t − 3) − H(t − 3)cos(2(t − 3))
                                                               4          4
                                                               1               1
                                                             + H(t − 3)(t − 3) − H(t − 3)sin(2(t − 3)).
                                                               4               8
                                        This solution is 0 until time t = 3. Since H(t − 3) = 1for t ≥ 3, then for these times,
                                                                     3  3              1
                                                               y(t) =  −  cos(2(t − 3)) + (t − 3)
                                                                     4  4              4
                                                                     1
                                                                  −   sin(2(t − 3)).
                                                                     8
                                           Upon combining terms, the solution is

                                                              0                               for t < 3
                                                       y(t) =  1
                                                              8 [2t − 6cos(2(t − 3)) − sin(2(t − 3))]  for t ≥ 3.
                                        Figure 3.16 shows part of the graph of this solution.





                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

                                   October 14, 2010  14:14   THM/NEIL   Page-91         27410_03_ch03_p77-120
   106   107   108   109   110   111   112   113   114   115   116