Page 216 - Advances in Biomechanics and Tissue Regeneration
P. 216
REFERENCES 211
[7] J.A. Buckwalter, M.J. Glimcher, R.R. Cooper, R. Recker, Bone biology. II: formation, form, modeling, remodeling, and regulation of cell func-
tion, Instr. Course Lect. 45 (1996) 387–399.
[8] R.B. Martin, D.B. Burr, N.A. Sharkey, D.P. Fyhrie, Skeletal Tissue Mechanics, Springer, New York, NY, 2015. https://doi.org/10.1007/978-1-
4939-3002-9.
[9] E. Ozcivici, Y.K. Luu, B. Adler, Y.-X. Qin, J. Rubin, S. Judex, C.T. Rubin, Mechanical signals as anabolic agents in bone, Nat. Rev. Rheumatol.
6 (1) (2010) 50–59.
[10] A.G. Robling, P.J. Niziolek, L.A. Baldridge, K.W. Condon, M.R. Allen, I. Alam, S.M. Mantila, J. Gluhak-Heinrich, T.M. Bellido, S.E. Harris,
C.H. Turner, Mechanical stimulation of bone in vivo reduces osteocyte expression of SOST/sclerostin, J. Biol. Chem. 283 (9) (2008) 5866–5875.
[11] S. Theoleyre, Y. Wittrant, S.K. Tat, Y. Fortun, F. Redini, D. Heymann, The molecular triad OPG/RANK/RANKL: involvement in the orches-
tration of pathophysiological bone remodeling, Cytokine Growth Factor Rev. 15 (6) (2004) 457–475.
[12] E. Lucchinetti, Composite models of bone properties, in: Bone Mechanics Handbook, CRC Press, 2001, pp. 12-1–12-19.
[13] E. Hamed, I. Jasiuk, Elastic modeling of bone at nanostructural level, Mater. Sci. Eng. R Rep. 73 (3–4) (2012) 27–49.
[14] A. Barkaoui, B. Tlili, A. Vercher-Martínez, R. Hambli, A multiscale modelling of bone ultrastructure elastic proprieties using finite elements
simulation and neural network method, Comput. Methods Prog. Biomed. 134 (2016) 69–78.
[15] E. Hamed, Y. Lee, I. Jasiuk, Multiscale modeling of elastic properties of cortical bone, Acta Mech. 213 (1–2) (2010) 131–154.
[16] I. Jasiuk, Micromechanics of bone modeled as a composite material, in: Micromechanics and Nanomechanics of Composite Solids, Springer
International Publishing, Cham, 2018, pp. 281–306, https://doi.org/10.1007/978-3-319-52794-9_10.
[17] R.O. Ritchie, M.J. Buehler, P. Hansma, Plasticity and toughness in bone, Phys. Today 62 (6) (2009) 41–47.
[18] W.J. Landis, The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in
their organic matrix, Bone 16 (5) (1995) 533–544.
[19] S. Weiner, W. Traub, Bone structure: from angstroms to microns, FASEB J. 6 (3) (1992) 879–885.
[20] F. Pauwels, Eine neue theorie € uber den Einfluβ mechanischer reize auf die differenzierung der st€ utzgewebe, Z. Anat. Entwicklungsgesch.
121 (6) (1960) 478–515.
[21] J.A. Adam, A simplified model of wound healing (with particular reference to the critical size defect), Math. Comput. Model. 30 (5–6)
(1999) 23–32.
[22] F. Pauwels, Gesammelte Abhandlungen zur funktionellen Anatomie des—Friedrich Pauwels—Springer, Springer, 1965, p. 543. Available
from: http://www.springer.com/us/book/9783642868429.
[23] H.M. Frost, The Laws of Bone Structure, Thomas, Springfield, IL, 1964.
[24] D.H. Hegedus, S.C. Cowin, Bone remodeling II: small strain adaptive elasticity, J. Elast. 6 (4) (1976) 337–352.
[25] S.C. Cowin, R.R. Nachlinger, Bone remodeling III: uniqueness and stability in adaptive elasticity theory, J. Elast. 8 (3) (1978) 285–295.
[26] S.C. Cowin, A.M. Sadegh, G.M. Luo, An evolutionary Wolff’s law for trabecular architecture, J. Biomech. Eng. 114 (1) (1992) 129–136.
[27] D.R. Carter, T.E. Orr, D.P. Fyhrie, Relationships between loading history and femoral cancellous bone architecture, J. Biomech. 22 (3) (1989)
231–244.
[28] D.R. Carter, Mechanical loading history and skeletal biology, J. Biomech. 20 (11–12) (1987) 1095–1109.
[29] D.P. Fyhrie, D.R. Carter, A unifying principle relating stress to trabecular bone morphology, J. Orthop. Res. 4 (3) (1986) 304–317.
[30] R.T. Whalen, D.R. Carter, C.R. Steele, Influence of physical activity on the regulation of bone density, J. Biomech. 21 (10) (1988) 825–837.
[31] R. Huiskes, H. Weinans, H.J. Grootenboer, M. Dalstra, B. Fudala, T.J. Slooff, Adaptive bone-remodeling theory applied to prosthetic-design
analysis, J. Biomech. 20 (11–12) (1987) 1135–1150.
[32] H.E. Pettermann, T.J. Reiter, F.G. Rammerstorfer, Computational simulation of internal bone remodeling, Arch. Comput. Methods Eng. 4 (4)
(1997) 295–323.
[33] T.J. Reiter, F.G. Rammerstorfer, H.J. Bohm, Numerical Algorithm for the Simulation of Bone Remodeling, in: American Society of Mechanical
Engineers, vol. 17, Bioengineering Division (Publication) BED, 1990, pp. 181–184. Available from: http://www.scopus.com/inward/record.
url?eid¼2-s2.0-0025555125&partnerID¼tZOtx3y1.
[34] P.J. Prendergast, R. Huiskes, K. Søballe, Biophysical stimuli on cells during tissue differentiation at implant interfaces, J. Biomech. 30 (6) (1997)
539–548.
[35] D. Lacroix, P.J. Prendergast, G. Li, D. Marsh, Biomechanical model to simulate tissue differentiation and bone regeneration: application to
fracture healing, Med. Biol. Eng. Comput. 40 (1) (2002) 14–21.
[36] D. Lacroix, P.J. Prendergast, A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading,
J. Biomech. 35 (9) (2002) 1163–1171.
[37] L.M. McNamara, P.J. Prendergast, Bone remodelling algorithms incorporating both strain and microdamage stimuli, J. Biomech. 40 (6) (2007)
1381–1391.
[38] M. Doblar e, J.M. García, Anisotropic bone remodelling model based on a continuum damage-repair theory, J. Biomech. 35 (1) (2002) 1–17.
[39] B.M. Mulvihill, P.J. Prendergast, Mechanobiological regulation of the remodelling cycle in trabecular bone and possible biomechanical path-
ways for osteoporosis, Clin. Biomech. 25 (5) (2010) 491–498.
[40] J. Belinha, R.M. Natal Jorge, L.M.J.S. Dinis, A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic
bone tissue material law, Comput. Methods Biomech. Biomed. Eng. 5842 (2012) 1–15.
[41] D.R. Carter, D.P. Fyhrie, R.T. Whalen, Trabecular bone density and loading history: regulation of connective tissue biology by mechanical
energy, J. Biomech. 20 (8) (1987) 785–794.
[42] M. Peyroteo, J. Belinha, L. Dinis, R. Natal Jorge, The mechanologic bone tissue remodeling analysis, in: Numerical Methods and Advanced
Simulation in Biomechanics and Biological Processes, 2018, pp. 303–323, https://doi.org/10.1016/b978-0-12-811718-7.00017-4.
[43] M.M.A. Peyroteo, J. Belinha, S. Vinga, L.M.J.S. Dinis, R.M. Natal Jorge, Mechanical bone remodelling: comparative study of distinct numerical
approaches, Eng. Anal. Bound. Elem. (2018), https://doi.org/10.1016/j.enganabound.2018.01.011.
[44] A. Bailón-Plaza, M.C.H. Van Der Meulen, A mathematical framework to study the effects of growth factor influences on fracture healing,
J. Theor. Biol. 212 (2) (2001) 191–209.
[45] S.V. Komarova, R.J. Smith, S.J. Dixon, S.M. Sims, L.M. Wahl, Mathematical model predicts a critical role for osteoclast autocrine regulation in
the control of bone remodeling, Bone 33 (2) (2003) 206–215.
I. BIOMECHANICS