Page 218 - Advances in Biomechanics and Tissue Regeneration
P. 218
REFERENCES 213
[82] D.E.S. Rodrigues, J. Belinha, F.M.A. Pires, L.M.J.S. Dinis, R.M. Natal Jorge, Homogenization technique for heterogeneous composite materials
using meshless methods, Eng. Anal. Bound. Elem. (2018), https://doi.org/10.1016/j.enganabound.2017.12.012.
[83] J.M.C. Azevedo, J. Belinha, L.M.J.S. Dinis, R.M. Natal Jorge, Crack path prediction using the natural neighbour radial point interpolation
method, Eng. Anal. Bound. Elem. 59 (2015) 144–158.
[84] J. Belinha, J.M.C. Azevedo, L.M.J.S. Dinis, R.M. Natal Jorge, The natural neighbor radial point interpolation method extended to the crack
growth simulation, Int. J. Appl. Mech. 8 (1) (2016) 1650006.
[85] B.V. Farahani, R. Amaral, J. Belinha, P.J. Tavares, P. Moreira, A GTN failure analysis of an AA6061-T6 Bi-failure specimen, Proc. Struct. Integr.
5 (2017) 981–988.
[86] J. Belinha, L.M.J.S. Dinis, R.M. Natal Jorge, The analysis of the bone remodelling around femoral stems: a meshless approach, Math. Comput.
Simul. 121 (2016) 64–94.
[87] J. Belinha, L.M.J.S. Dinis, R.M. Natal Jorge, The mandible remodeling induced by dental implants: a meshless approach, J. Mech. Med. Biol.
15 (4) (2015) 1550059.
[88] H.M.S. Duarte, J.R. Andrade, L.M.J.S. Dinis, R.M. Natal Jorge, J. Belinha, Numerical analysis of dental implants using a new advanced dis-
cretization technique, Mech. Adv. Mater. Struct. 23 (4) (2015) 467–479.
[89] C.S.S. Tavares, J. Belinha, L.M.J.S. Dinis, R.M. Natal Jorge, The elasto-plastic response of the bone tissue due to the insertion of dental implants,
in: Procedia Engineering, vol. 110, 2015, pp. 37–44, https://doi.org/10.1016/j.proeng.2015.07.007.
[90] M.H. Doweidar, B. Calvo, I. Alfaro, P. Groenenboom, M. Doblar e, A comparison of implicit and explicit natural element methods in large
strains problems: application to soft biological tissues modeling, Comput. Methods Appl. Mech. Eng. 199 (25–28) (2010) 1691–1700.
[91] M. Marques, J. Belinha, L.M.J.S. Dinis, R. Natal Jorge, A brain impact stress analysis using advanced discretization meshless techniques, Proc.
Inst. Mech. Eng. H 232 (3) (2018) 257–270.
[92] C.F. Santos, J. Belinha, F. Gentil, M. Parente, B. Areias, R.N. Jorge, Biomechanical study of the vestibular system of the inner ear using a numer-
ical method, Proc. IUTAM 24 (2017) 30–37.
[93] C.F. Santos, J. Belinha, F. Gentil, M. Parente, R.N. Jorge, The free vibrations analysis of the cupula in the inner ear using a natural neighbor
meshless method, Eng. Anal. Bound. Elem. (2018), https://doi.org/10.1016/j.enganabound.2018.01.002.
[94] M. Doblar e, E. Cueto, B. Calvo, M.A. Martínez, J.M. Garcia, J. Cego nino, On the employ of meshless methods in biomechanics, Comput.
Methods Appl. Mech. Eng. 194 (6–8) (2005) 801–821.
[95] J.M. García, M. Doblar e, E. Cueto, Simulation of bone internal remodeling by means of the α-shape-based natural element method,
in: European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2000), 2000, pp. 11–14.
[96] K.M. Liew, H.Y. Wu, T.Y. Ng, Meshless method for modeling of human proximal femur: treatment of nonconvex boundaries and stress anal-
ysis, Comput. Mech. 28 (5) (2002) 390–400.
[97] J.D. Lee, Y. Chen, X. Zeng, A. Eskandarian, M. Oskard, Modeling and simulation of osteoporosis and fracture of trabecular bone by meshless
method, Int. J. Eng. Sci. 45 (2–8) (2007) 329–338.
[98] F. Taddei, M. Pani, L. Zovatto, E. Tonti, M. Viceconti, A new meshless approach for subject-specific strain prediction in long bones: evaluation
of accuracy, Clin. Biomech. 23 (9) (2008) 1192–1199.
[99] F. Buti, D. Cacciagrano, F. Corradini, E. Merelli, L. Tesei, M. Pani, Bone remodelling in BioShape, Electron. Notes Theor. Comput. Sci. 268 (C)
(2010) 17–29.
[100] J. Belinha, R.M. Natal Jorge, L.M.J.S. Dinis, Bone tissue remodelling analysis considering a radial point interpolator meshless method, Eng.
Anal. Bound. Elem. 36 (11) (2012) 1660–1670.
[101] J. Belinha, R.M. Natal Jorge, L.M.J.S. Dinis, A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic
bone tissue material law, Comput. Methods Biomech. Biomed. Eng. 5842 (2012) 1–15, https://doi.org/10.1080/10255842.2012.654783.
[102] S.F. Moreira, J. Belinha, L.M.J.S. Dinis, R.M. Natal Jorge, A global numerical analysis of the “central incisor/local maxillary bone” system using
a meshless method, MCB Mol. Cell. Biomech. 11 (3) (2014) 151–184.
[103] V.P.H.U. Nguyen, M. Stroeven, L.J. Sluys, Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent
developments, J. Multiscale Model. 03 (4) (2011) 229–270.
[104] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern. 9 (1) (1979) 62–66.
[105] W.J. Whitehouse, The quantitative morphology of anisotropic trabecular bone, J. Microsc. 101 (2) (1974) 153–168.
[106] K. Mizuno, M. Matsukawa, T. Otani, M. Takada, I. Mano, T. Tsujimoto, Effects of structural anisotropy of cancellous bone on speed of ultra-
sonic fast waves in the bovine femur, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (7) (2008) 1480–1487.
[107] A. Odgaard, Three-dimensional methods for quantification of cancellous bone architecture, Bone 20 (4) (1997) 315–328.
I. BIOMECHANICS