Page 217 - Advances in Biomechanics and Tissue Regeneration
P. 217

212                  10. DETERMINATION OF THE ANISOTROPIC MECHANICAL PROPERTIES OF BONE TISSUE

            [46] V. Lemaire, F.L. Tobin, L.D. Greller, C.R. Cho, L.J. Suva, Modeling the interactions between osteoblast and osteoclast activities in bone remo-
                deling, J. Theor. Biol. 229 (3) (2004) 293–309.
            [47] P. Pivonka, J. Zimak, D.W. Smith, B.S. Gardiner, C.R. Dunstan, N.A. Sims, T.J. Martin, G.R. Mundy, T. John Martin, G.R. Mundy, Model struc-
                ture and control of bone remodeling: a theoretical study, Bone 43 (2) (2008) 249–263.
            [48] M.D. Ryser, N. Nigam, S.V. Komarova, Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit, J. Bone Miner.
                Res. 24 (5) (2009) 860–870.
            [49] R. Huiskes, W.D.V. Driel, P.J. Prendergast, K. Søballe, A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation,
                J. Mater. Sci. Mater. Med. 8 (12) (1997) 785–788.
            [50] S.J. Mousavi, M.H. Doweidar, Role of mechanical cues in cell differentiation and proliferation: a 3D numerical model, PLoS ONE 10 (5) (2015)
                e0124529.
            [51] C. Lerebours, P.R. Buenzli, S. Scheiner, P. Pivonka, A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss
                in the femur during osteoporosis and mechanical disuse, Biomech. Model. Mechanobiol. 15 (1) (2016) 43–67.
            [52] R.T. Hart, D.T. Davy, K.G. Heiple, A computational method for stress analysis of adaptive elastic materials with a view toward applications in
                strain-induced bone remodeling, J. Biomech. Eng. 106 (4) (1984) 342.
            [53] G.S. Beaupr  e, T.E. Orr, D.R. Carter, An approach for time-dependent bone modeling and remodeling-theoretical development, J. Orthop. Res.
                8 (5) (1990) 651–661.
            [54] C.R. Jacobs, J.C. Simo, G.S. Beaupre, D.R. Carter, Adaptive bone remodeling incorporating simultaneous density and anisotropy consider-
                ations, J. Biomech. 30 (6) (1997) 603–613.
            [55] P. Fernandes, J.M. Guedes, H. Rodrigues, Topology optimization of three-dimensional linear elastic structures with a constraint on
                “perimeter”, Comput. Struct. 73 (6) (1999) 583–594.
            [56] M. Doblar  e, J.M. García, Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the prox-
                imal femur before and after total hip replacement, J. Biomech. 34 (9) (2001) 1157–1170.
            [57] J. Hazrati Marangalou, K. Ito, B. van Rietbergen, A novel approach to estimate trabecular bone anisotropy from stress tensors, Biomech. Model.
                Mechanobiol. 14 (1) (2015) 39–48.
                        €
            [58] R. Moreno, O. Smedby, D.H. Pahr, Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors, Biomech. Model.
                Mechanobiol. 15 (4) (2016) 831–844.
            [59] J. Kabel, B. van Rietbergen, A. Odgaard, R. Huiskes, Constitutive relationships of fabric, density, and elastic properties in cancellous bone
                architecture, Bone 25 (4) (1999) 481–486.
            [60] S.C. Cowin, S.B. Doty, Tissue Mechanics, Springer Science, New York, NY, ISBN 0-387-36825-6, 2007.
            [61] J.C. Rice, S.C. Cowin, J.A. Bowman, On the dependence of the elasticity and strength of cancellous bone on apparent density, J. Biomech. 21 (2)
                (1988) 155–168.
            [62] P.K. Zysset, A review of morphology-elasticity relationships in human trabecular bone: theories and experiments, J. Biomech. 36 (10) (2003)
                1469–1485.
            [63] R. Huiskes, E.Y.S. Chao, A survey of finite element analysis in orthopedic biomechanics: the first decade, J. Biomech. 16 (6) (1983) 385–409.
            [64] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, fourth ed., McGraw-Hill, London, 1994.
            [65] R.A. Gingold, J.J. Monaghan, Smooth particle hydrodynamics: theory and application to non-spherical stars, Mon. Notices R. Astron. Soc.
                181 (1977) 375–389.
            [66] L.M.J.S. Dinis, R.M. Natal Jorge, J. Belinha, Analysis of 3D solids using the natural neighbour radial point interpolation method, Comput.
                Methods Appl. Mech. Eng. 196 (13–16) (2007) 2009–2028.
            [67] J. Belinha, L.M.J.S. Dinis, R.M. Natal Jorge, The natural radial element method, Int. J. Numer. Methods Eng. 93 (12) (2013) 1286–1313.
            [68] J. Belinha, L.M.J.S. Dinis, Elasto-plastic analysis of plates by the element free Galerkin method, Eng. Comput. 23 (5) (2006) 525–551.
            [69] J. Belinha, L.M.J.S. Dinis, Nonlinear analysis of plates and laminates using the element free Galerkin method, Compos. Struct. 78 (3) (2007)
                337–350.
            [70] L.M.J.S. Dinis, R.M. Natal Jorge, J. Belinha, Analysis of plates and laminates using the natural neighbour radial point interpolation method,
                Eng. Anal. Bound. Elem. 32 (3) (2008) 267–279.
            [71] J. Belinha, L.M.J.S. Dinis, R.M. Natal Jorge, The natural neighbour radial point interpolation method: dynamic applications, Eng. Comput.
                26 (8) (2009) 911–949.
            [72] L.M.J.S. Dinis, R.M. Natal Jorge, J. Belinha, An unconstrained third-order plate theory applied to functionally graded plates using a meshless
                method, Mech. Adv. Mater. Struct. 17 (2) (2010) 108–133.
            [73] L.M.J.S. Dinis, R.M. Natal Jorge, J. Belinha, Static and dynamic analysis of laminated plates based on an unconstrained third order theory and
                using a radial point interpolator meshless method, Comput. Struct. (19) 1771–1784, 10.1016/j.compstruc.2010.10.015.
            [74] J. Belinha, L.M.J.S. Dinis, R.M. Natal Jorge, Analysis of thick plates by the natural radial element method, Int. J. Mech. Sci. 76 (2013) 33–48.
            [75] S. Moreira, J. Belinha, L.M.J.S. Dinis, R.M. Natal Jorge, Análise de vigas laminadas utilizando o natural neighbour radial point interpolation
                method, Rev. Internac. Metod. Numer. Calc. Disen. Ingr. 30 (2) (2014) 108–120.
            [76] B.V. Farahani, J.M. Berardo, R. Drgas, J.M.A. C  esar de Sá, A.J.M. Ferreira, J. Belinha, The axisymmetric analysis of circular plates using the
                radial point interpolation method, Int. J. Comput. Methods Eng. Sci. Mech. 16 (6) (2015) 336–353.
            [77] B.V. Farahani, J. Berardo, J. Belinha, A.J.M. Ferreira, P.J. Tavares, P.M.G.P. Moreira, On the optimal shape parameters of distinct versions of
                RBF meshless methods for the bending analysis of plates, Eng. Anal. Bound. Elem. 84 (2017) 77–86.
            [78] B.V. Farahani, J. Berardo, J. Belinha, A.J.M. Ferreira, P.J. Tavares, P. Moreira, An optimized RBF analysis of an isotropic Mindlin plate in bend-
                ing, Proc. Struct. Integr. 5 (2017) 584–591.
            [79] L.M.J.S. Dinis, R.M. Natal Jorge, J. Belinha, Analysis of 3D solids using the natural neighbour radial point interpolation method, Comput.
                Methods Appl. Mech. Eng. 196 (13–16) (2007) 2009–2028.
            [80] L.M.J.S. Dinis, R.M. Natal Jorge, J. Belinha, A 3D shell-like approach using a natural neighbour meshless method: isotropic and orthotropic thin
                structures, Compos. Struct. 92 (5) (2010) 1132–1142.
            [81] J. Belinha, L.M.J.S. Dinis, R.M. Natal Jorge, Composite laminated plate analysis using the natural radial element method, Compos. Struct.
                103 (2013) 50–67.



                                                       I. BIOMECHANICS
   212   213   214   215   216   217   218   219   220   221   222