Page 267 - Advances in Biomechanics and Tissue Regeneration
P. 267

264                             13. MULTIDIMENSIONAL BIOMECHANICS APPROACHES

            [42] Y.-S. Lee, T.L. Arinzeh, The influence of piezoelectric scaffolds on neural differentiation of human neural stem/progenitor cells, Tissue Eng. A
                18 (2012) 2063–2072.
            [43] C. Ribeiro, J. P€ arssinen, V. Sencadas, V. Correia, S. Miettinen, V.P. Hyt€ onen, S. Lanceros-M  endez, Dynamic piezoelectric stimulation enhances
                osteogenic differentiation of human adipose stem cells, J. Biomed. Mater. Res. Part A 103 (2015) 2172–2175.
            [44] G.B. Schneider, A. English, M. Abraham, R. Zaharias, C. Stanford, J. Keller, The effect of hydrogel charge density on cell attachment,
                Biomaterials 25 (2004) 3023–3028.
            [45] P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications,
                Prog. Polym. Sci. 39 (2014) 683–706.
            [46] C. Ribeiro, V. Correia, P. Martins, F.M. Gama, S. Lanceros-Mendez, Proving the suitability of magnetoelectric stimuli for tissue engineering
                applications, Colloids Surf. B: Biointerfaces 140 (2016) 430–436.
            [47] J.L. Hoon, M.H. Tan, C.G. Koh, The regulation of cellular responses to mechanical cues by rho gtpases, Cell 5 (2016).
            [48] C. Brás-Pereira, E. Moreno, Mechanical cell competition, Curr. Opin. Cell Biol. 51 (2018) 15–21.
            [49] T.J. Kirby, J. Lammerding, Emerging views of the nucleus as a cellular mechanosensor, Nat. Cell Biol. 20 (2018) 373–381.
            [50] V.M. Weaver, Cell and tissue mechanics: the new cell biology frontier, Mol. Biol. Cell 28 (2017) 1815–1818.
            [51] N.V. Bukoreshtliev, K. Haase, A.E. Pelling, Mechanical cues in cellular signalling and communication, Cell Tissue Res. 352 (2013) 77–94.
            [52] J.M. Barnes, L. Przybyla, V.M. Weaver, Tissue mechanics regulate brain development, homeostasis and disease, J. Cell Sci. 130 (2017) 71–82.
            [53] M.L. McCain, K.K. Parker, Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac func-
                tion, Pflugers Archiv Eur. J. Physiol. 462 (2011) 89–104.
            [54] A. Trumbull, G. Subramanian, E. Yildirim-Ayan, Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells,
                Biomed. Eng. Online 15 (2016) 43.
            [55] M. Levin, Bioelectric mechanisms in regeneration: unique aspects and future perspectives, Semin. Cell Dev. Biol. 20 (2009) 543–556.
            [56] X. Yuan, D.E. Arkonac, P.H.G. Chao, G. Vunjak-Novakovic, Electrical stimulation enhances cell migration and integrative repair in the menis-
                cus, Sci. Rep. 4 (2015).
            [57] S.H. Cartmell, J. Dobson, The use of magnetic particles in tissue engineering, in: Nanotechnologies for the Life Sciences, Wiley, 2011.
            [58] C.M. Bidan, M. Fratzl, A. Coullomb, P. Moreau, A.H. Lombard, I. Wang, M. Balland, T. Boudou, N.M. Dempsey, T. Devillers,
                A. Dupont, Magneto-active substrates for local mechanical stimulation of living cells, Sci. Rep. 8 (2018) 1464.
            [59] S.J. Mousavi, M.H. Doweidar, Encapsulated piezoelectric nanoparticle–hydrogel smart material to remotely regulate cell differentiation and
                proliferation: a finite element model, Comput. Mech. (2018) 1–19.
            [60] S.J. Mousavi, M.H. Doweidar, Numerical modeling of cell differentiation and proliferation in force-induced substrates via encapsulated mag-
                netic nanoparticles, Comput. Methods Prog. Biomed. 130 (2016) 106–117.
            [61] B. Baker, R.O. Becker, J. Spadaro, A study of electrochemical enhancement of articular cartilage repair, Clin. Orthop. Relat. Res. 102 (1974)
                251–267.
            [62] R. Balint, N.J. Cassidy, S.H. Cartmell, Electrical stimulation: a novel tool for tissue engineering, Tissue Eng. B: Rev. 19 (2013) 48–57.
            [63] J. Serrado Nunes, A. Wu, J. Gomes, V. Sencadas, P.M. Vilarinho, S. Lanceros-M  endez, Relationship between the microstructure and the micro-
                scopic piezoelectric response of the α- and β-phases of poly(vinylidene fluoride), Appl. Phys. A 95 (2009) 875–880.
            [64] J.-C. Dubois, Ferroelectric polymers: Chemistry, physics, and applications. Edited by Hari Singh Nalwa, Marcel Dekker, New York 1995, XII,
                895 pp., hardcover, $225.00, ISBN 0-8247-9468-0, Adv. Mater. 8 (1996) 542.
            [65] C. Ribeiro, J.A. Panadero, V. Sencadas, S. Lanceros-M  endez, M.N. Tamaño, D. Moratal, M. Salmerón-Sánchez, J.L. Gómez Ribelles, Fibronectin
                adsorption and cell response on electroactive poly(vinylidene fluoride) films, Biomed. Mater. 7 (2012) 035004–035013.
            [66] H. Lee, B. Bhushan, Nanotribology of polyvinylidene difluoride (PVDF) in the presence of electric field, J. Colloid Interface Sci. 360 (2011)
                777–784.
            [67] R. Costa, C. Ribeiro, A.C. Lopes, P. Martins, V. Sencadas, R. Soares, S. Lanceros-Mendez, Osteoblast, fibroblast and in vivo biological response
                to poly(vinylidene fluoride) based composite materials, J. Mater. Sci. Mater. Med. 24 (2012) 395–403.
            [68] T. Yildirim, Stimuli-responsive polymeric nanoparticles biomedical applications, in: Chemisch-Geowissenschaftliche Fakult€ at, Friedrich-
                Schiller-Universit€ at Jena, 2017, p. 324.
            [69] S.M. Damaraju, Y. Shen, E. Elele, B. Khusid, A. Eshghinejad, J. Li, M. Jaffe, T.L. Arinzeh, Three-dimensional piezoelectric fibrous scaffolds
                selectively promote mesenchymal stem cell differentiation, Biomaterials 149 (2017) 51–62.
            [70] M. Mardani, S. Roshankhah, B. Hashemibeni, M. Salahshoor, E. Naghsh, E. Esfandiari, Induction of chondrogenic differentiation of human
                adipose-derived stem cells by low frequency electric field, Adv. Biomed. Res. 5 (2016) 97.
            [71] A. Llucià-Valldeperas, C. Soler-Botija, C. Gálvez-Montón, S. Roura, C. Prat-Vidal, I. Perea-Gil, B. Sanchez, R. Bragos, G. Vunjak-
                Novakovic, A. Bayes-Genis, Electromechanical conditioning of adult progenitor cells improves recovery of cardiac function after myocardial
                infarction, Stem Cells Transl. Med. 6 (2017) 970–981.
            [72] E. Serena, E. Figallo, N. Tandon, C. Cannizzaro, S. Gerecht, N. Elvassore, G. Vunjak-Novakovic, Electrical stimulation of human embryonic
                stem cells: cardiac differentiation and the generation of reactive oxygen species, Exp. Cell Res. 315 (2009) 3611–3619.
            [73] K.Y. Morgan, L.D. Black, Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engi-
                neered cardiac constructs, Tissue Eng. Part A 20 (2014) 1654–1667.
            [74] T. Boudou, W.R. Legant, A. Mu, M.A. Borochin, N. Thavandiran, M. Radisic, P.W. Zandstra, J.A. Epstein, K.B. Margulies, C.
                S. Chen, A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues, Tissue Eng. Part A
                18 (2012) 910–919.
            [75] A. Llucià-Valldeperas, B. Sanchez, C. Soler-Botija, C. Gálvez-Montón, C. Prat-Vidal, S. Roura, J. Rosell-Ferrer, R. Bragos, A. Bayes-
                Genis, Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery, J. Tissue
                Eng. Regen. Med. 9 (2015) E76–E83.
            [76] G. Shi, Z. Zhang, M. Rouabhia, The regulation of cell functions electrically using biodegradable polypyrrole-polylactide conductors,
                Biomaterials 29 (2008) 3792–3798.
            [77] G. Shi, M. Rouabhia, S. Meng, Z. Zhang, Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable
                substrates, J. Biomed. Mater. Res. Part A 84 (2008) 1026–1037.



                                          II. MECHANOBIOLOGY AND TISSUE REGENERATION
   262   263   264   265   266   267   268   269   270   271   272