Page 268 - Advances in Biomechanics and Tissue Regeneration
P. 268
REFERENCES 265
[78] G. Shi, M. Rouabhia, Z. Wang, L.H. Dao, Z. Zhang, A novel electrically conductive and biodegradable composite made of polypyrrole nano-
particles and polylactide, Biomaterials 25 (2004) 2477–2488.
[79] Q. Wan, S.S. Yeung, K.K. Cheung, S.W. Au, W.W. Lam, Y.H. Li, Z.Q. Dai, E.W. Yeung, Optimizing electrical stimulation for promoting satellite
cell proliferation in muscle disuse atrophy, Am. J. Phys. Med. Rehabil. 95 (2016) 28–38.
[80] A.S. Rowlands, J.J. Cooper-White, Directing phenotype of vascular smooth muscle cells using electrically stimulated conducting polymer,
Biomaterials 29 (2008) 4510–4520.
[81] P. Bajaj, B. Reddy, L. Millet, C. Wei, P. Zorlutuna, G. Bao, R. Bashir, Patterning the differentiation of C2C12 skeletal myoblasts, Integr. Biol.
3 (2011) 897–909.
[82] M. Flaibani, L. Boldrin, E. Cimetta, M. Piccoli, P. De Coppi, N. Elvassore, Muscle differentiation and myotubes alignment is influenced by
micropatterned surfaces and exogenous electrical stimulation, Tissue Eng. A 15 (2009) 2447–2457.
[83] H. Jo, M. Sim, S. Kim, S. Yang, Y. Yoo, J.H. Park, T.H. Yoon, M.G. Kim, J.Y. Lee, Electrically conductive graphene/polyacrylamide hydrogels
produced by mild chemical reduction for enhanced myoblast growth and differentiation, Acta Biomater. 48 (2017) 100–109.
[84] U.H. Ko, S. Park, H. Bang, M. Kim, H. Shin, J.H. Shin, Promotion of myogenic maturation by timely application of electric field along the
topographical alignment, Tissue Eng. Part A 24 (2018) 752–760.
[85] C.E. Schmidt, V.R. Shastri, J.P. Vacanti, R. Langer, Stimulation of neurite outgrowth using an electrically conducting polymer, Proc. Natl. Acad.
Sci. U. S. A. 94 (1997) 8948–8953.
[86] L. Jaatinen, S. Salemi, S. Miettinen, J. Hyttinen, D. Eberli, The combination of electric current and copper promotes neuronal differentiation of
adipose-derived stem cells, Ann. Biomed. Eng. 43 (2015) 1014–1023.
[87] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, S. Ramakrishna, Electrical stimulation of nerve cells using con-
ductive nanofibrous scaffolds for nerve tissue engineering, Tissue Eng. Part A 15 (2009) 3605–3619.
[88] S.I. Jeong, I.D. Jun, M.J. Choi, Y.C. Nho, Y.M. Lee, H. Shin, Development of electroactive and elastic nanofibers that contain polyaniline and
poly(L-lactide-co-ε-caprolactone) for the control of cell adhesion, Macromol. Biosci. 8 (2008) 627–637.
[89] J.Y. Lee, J.-W. Lee, C.E. Schmidt, Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole,
J. R. Soc. Interface 6 (2009) 801–810.
[90] Z. Zhang, M. Rouabhia, Z. Wang, C. Roberge, G. Shi, P. Roche, J. Li, L.H. Dao, Electrically conductive biodegradable polymer composite for
nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration, Artif. Organs 31 (2007) 13–22.
[91] J. Xie, M.R. MacEwcm, S.M. Willerth, X. Li, D.W. Moran, S.E. Sakiyama-Elbert, Y. Xia, Conductive core-sheath nanofibers and their potential
application in neural tissue engineering, Adv. Funct. Mater. 19 (2009) 2312–2318.
[92] B.C. Thompson, R.T. Richardson, S.E. Moulton, A.J. Evans, S. O’Leary, G.M. Clark, G.G. Wallace, Conducting polymers, dual neurotrophins
and pulsed electrical stimulation – dramatic effects on neurite outgrowth, J. Control. Release 141 (2010) 161–167.
[93] L. Huang, X. Zhuang, J. Hu, L. Lang, P. Zhang, Y. Wang, X. Chen, Y. Wei, X. Jing, Synthesis of biodegradable and electroactive multiblock
polylactide and aniline pentamer copolymer for tissue engineering applications, Biomacromolecules 9 (2008) 850–858.
[94] J. Huang, X. Hu, L. Lu, Z. Ye, Q. Zhang, Z. Luo, Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers,
J. Biomed. Mater. Res. Part A 93 (2010) 164–174.
[95] J. Zhou, L. Cheng, X. Sun, X. Wang, S. Jin, J. Li, Q. Wu, Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned
electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation, Front. Mater. Sci. 10 (2016) 260–269.
[96] L. Tian, M.P. Prabhakaran, J. Hu, M. Chen, F. Besenbacher, S. Ramakrishna, Synergistic effect of topography, surface chemistry and conduc-
tivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells, Colloids Surf. B: Biointerfaces 145 (2016) 420–429.
[97] N. Gomez, C.E. Schmidt, Nerve growth factor-immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite exten-
sion, J. Biomed. Mater. Res. Part A 81 (2007) 135–149.
[98] J.Y. Lee, C.A. Bashur, A.S. Goldstein, C.E. Schmidt, Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications,
Biomaterials 30 (2009) 4325–4335.
[99] G. Ciofani, S. Danti, D. D’Alessandro, L. Ricotti, S. Moscato, G. Bertoni, A. Falqui, S. Berrettini, M. Petrini, V. Mattoli,
A. Menciassi, Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation, ACS Nano
4 (2010) 6267–6277.
[100] P.M. George, T.M. Bliss, T. Hua, A. Lee, B. Oh, A. Levinson, S. Mehta, G. Sun, G.K. Steinberg, Electrical preconditioning of stem cells with a
conductive polymer scaffold enhances stroke recovery, Biomaterials 142 (2017) 31–40.
[101] N. Royo-Gascon, M. Wininger, J.I. Scheinbeim, B.L. Firestein, W. Craelius, Piezoelectric substrates promote neurite growth in rat spinal cord
neurons, Ann. Biomed. Eng. 41 (2013) 112–122.
[102] A. Marino, S. Arai, Y. Hou, E. Sinibaldi, M. Pellegrino, Y.T. Chang, B. Mazzolai, V. Mattoli, M. Suzuki, G. Ciofani, Piezoelectric nanoparticle-
assisted wireless neuronal stimulation, ACS Nano 9 (2015) 7678–7689.
[103] G.G. Genchi, L. Ceseracciu, A. Marino, M. Labardi, S. Marras, F. Pignatelli, L. Bruschini, V. Mattoli, G. Ciofani, P(VDF-TrFE)/BaTiO 3 nano-
particle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells, Adv. Healthc. Mater.
5 (2016) 1808–1820.
[104] S. Sun, I. Titushkin, M. Cho, Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus,
Bioelectrochemistry 69 (2006) 133–141.
[105] R. Bizios, K.R. Ullmann, P.R. Supronowicz, P.M. Ajayan, D.W. Metzger, B.P. Arulanandam, Novel current-conducting composite substrates
for exposing osteoblasts to alternating current stimulation, J. Biomed. Mater. Res. 59 (2002) 499–506.
[106] S. Shao, S. Zhou, L. Li, J. Li, C. Luo, J. Wang, X. Li, J. Weng, Osteoblast function on electrically conductive electrospun PLA/MWCNTs nano-
fibers, Biomaterials 32 (2011) 2821–2833.
[107] M.T. Rodrigues, M.E. Gomes, J.F. Mano, R.L. Reis, β-PVDF membranes induce cellular proliferation and differentiation in static and dynamic
conditions, Mater. Sci. Forum (2008) 72–76.
[108] W.W. Hu, Y.T. Hsu, Y.C. Cheng, C. Li, R.C. Ruaan, C.C. Chien, C.A. Chung, C.W. Tsao, Electrical stimulation to promote osteogenesis using
conductive polypyrrole films, Mater. Sci. Eng. C 37 (2014) 28–36.
[109] J. Zhang, M. Li, E.T. Kang, K.G. Neoh, Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of
voltage-gated ion channels, Acta Biomater. 32 (2016) 46–56.
II. MECHANOBIOLOGY AND TISSUE REGENERATION