Page 266 - Advances in Biomechanics and Tissue Regeneration
P. 266

REFERENCES                                         263

           References
             [1] K. Burridge, C. Guilluy, Focal adhesions, stress fibers and mechanical tension, Exp. Cell Res. 343 (2016) 14–20.
             [2] C.Y. Ning, Z.N. Zhou, G.X. Tan, Y. Zhu, C.B. Mao, Electroactive polymers for tissue regeneration: developments and perspectives, Prog.
                Polym. Sci. 81 (2018) 144–162.
             [3] J.J. Telega, R. Wojnar, Piezoelectric effects in biological tissues, J. Theor. Appl. Mech. 40 (3) (2002).
             [4] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, H. Baharvand, S. Kiani, S.S. Al-Deyab, S. Ramakrishna, Appli-
                cation of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering, J. Tissue Eng. Regen. Med. 5 (2011) e17–e35.
             [5] C. Ribeiro, V. Sencadas, D.M. Correia, S. Lanceros-M  endez, Piezoelectric polymers as biomaterials for tissue engineering applications, Colloids
                Surf. B: Biointerfaces 136 (2015) 46–55.
             [6] G.L. Sulik, H.K. Soong, P.C.T. Chang, W.C. Parkinson, S.G. Elner, V.M. Elner, Effects of steady electric fields on human retinal pigment epi-
                thelial cell orientation and migration in culture, Acta Ophthalmol. 70 (1992) 115–122.
             [7] M. Zhao, A. Agius-Fernandez, J.V. Forrester, C.D. McCaig, Orientation and directed migration of cultured corneal epithelial cells in small
                electric fields are serum dependent, J. Cell Sci. 109 (1996) 1405–1414.
             [8] J. Pu, C.D. McCaig, L. Cao, Z. Zhao, J.E. Segall, M. Zhao, EGF receptor signalling is essential for electric-field-directed migration of breast
                cancer cells, J. Cell Sci. 120 (2007) 3395–3403.
             [9] E. Wang, M. Zhao, J.V. Forrester, C.D. McCaig, Bi-directional migration of lens epithelial cells in a physiological electrical field, Exp. Eye Res.
                76 (2003) 29–37.
            [10] A. Bouaziz, A. Richert, A. Caprani, Vascular endothelial cell responses to different electrically charged poly(vinylidene fluoride) supports
                under static and oscillating flow conditions, Biomaterials 18 (1997) 107–112.
            [11] R.F. Valentini, T.G. Vargo, J.A. Gardella Jr., P. Aebischer, Electrically charged polymeric substrates enhance nerve fibre outgrowth in vitro,
                Biomaterials 13 (1992) 183–190.
            [12] P.-h.G. Chao, H.H. Lu, C.T. Hung, S.B. Nicoll, J.C. Bulinski, Effects of applied DC electric field on ligament fibroblast migration and wound
                healing, Connect. Tissue Res. 48 (2007) 188–197.
            [13] I. Yasuda, K. Noguchi, T. Sata, Dynamic callus and electric callus, J. Bone Joint Surg. 37 (1955) 1292–1293.
            [14] E. Fukada, I. Yasuda, On the piezoelectric effect of bone, J. Phys. Soc. Jpn. 12 (1957) 1158–1162.
            [15] M.H. Shamos, L.S. Lavine, Piezoelectricity as a fundamental property of biological tissues, Nature 213 (1967) 267–269.
            [16] E. Fukada, Electricl phenomena in biorheology, Biorheology 19 (1982) 15–27.
            [17] H. Athenstaedt, Pyroelectric and piezoelectric behaviour of human dental hard tissues, Arch. Oral Biol. 16 (1971) 495–501.
            [18] J.C. Anderson, C. Eriksson, Electrical properies of wet collagen, Nature 218 (1968) 166–168.
            [19] J.C. Anderson, C. Eriksson, Piezoelectric properties of dry and wet bone, Nature 227 (1970) 491–492.
            [20] C. Halperin, S. Mutchnik, A. Agronin, M. Molotskii, P. Urenski, M. Salai, G. Rosenman, Piezoelectric effect in human bones studied in nano-
                meter scale, Nano Lett. 4 (2004) 1253–1256.
            [21] C.A.L. Bassett, R.O. Becker, Generation of electric potentials by bone in response to mechanical stress, Science 137 (1962) 1063–1064.
            [22] H.M. Frost, Wolff law and bones structural adaptations to mechanical usage – an overview for clinician, Angle Orthod. 64 (1994) 175–188.
            [23] A.A. Marino, R.O. Becker, Piezoelectric effect and growth control in bone, Nature 228 (1970) 473–474.
            [24] S. Baiotto, M. Zidi, Theoretical and numerical study of a bone remodeling model: the effect of osteocyte cells distribution, Biomech. Model.
                Mechanobiol. 3 (2004) 6–16.
            [25] K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials 21 (2000) 667–681.
            [26] B. Miara, E. Rohan, M. Zidi, B. Labat, Piezomaterials for bone regeneration design – homogenization approach, J. Mech. Phys. Solids 53 (2005)
                2529–2556.
            [27] E. Fukada, History and recent progress in piezoelectric polymers, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47 (2000) 1277–1290.
            [28] C.R. West, A.E. Bowden, Using tendon inherent electric properties to consistently track induced mechanical strain, Ann. Biomed. Eng. 40 (2012)
                1568–1574.
            [29] E. Fukada, I. Yasuda, Piezoelectric effects in collagen, Jpn. J. Appl. Phys. 3 (1964) 117–118.
            [30] A.A. Marino, R.O. Becker, Piezoelectricity in hydrated frozen bone and tendon, Nature 253 (1975) 627–628.
            [31] D. Gross, W.S. Williams, Streaming potential and the electromechanical response of physiologically-moist bone, J. Biomech. 15 (1982) 277–295.
            [32] L.S. Lavine, I. Lustrin, M.H. Shamos, R.A. Rinaldi, A.R. Liboff, Electric enhancement of bone healing, Science 175 (1972) 1118–1121.
            [33] A.J.P. Martin, Tribo-electricity in wool and hair, Proc. Phys. Soc. 53 (1941) 186–189.
            [34] S.B. Lang, A.A. Marino, G. Berkovic, M. Fowler, K.D. Abreo, Piezoelectricity in the human pineal gland, Bioelectrochem. Bioenerg. 41 (1996)
                191–195.
            [35] J.-L. Ruan, N.L. Tulloch, M.V. Razumova, M. Saiget, V. Muskheli, L. Pabon, H. Reinecke, M. Regnier, C.E. Murry, Mechanical stress condi-
                tioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue,
                Circulation 134 (2016) 1557–1567.
            [36] D. Kai, M.P. Prabhakaran, G. Jin, S. Ramakrishna, Biocompatibility evaluation of electrically conductive nanofibrous scaffolds for cardiac tis-
                sue engineering, J. Mater. Chem. B 1 (2013) 2305–2314.
            [37] B. Wang, G. Wang, F. To, J.R. Butler, A. Claude, R.M. McLaughlin, L.N. Williams, A.L. de Jongh Curry, J. Liao, Myocardial scaffold-based
                cardiac tissue engineering: application of coordinated mechanical and electrical stimulations, Langmuir 29 (2013) 11109–11117.
            [38] H. Cao, B.J. Kang, C.A. Lee, K.K. Shung, T.K. Hsiai, Electrical and mechanical strategies to enable cardiac repair and regeneration, IEEE Rev.
                Biomed. Eng. 8 (2015) 114–124.
            [39] G.N. Li, D. Hoffman-Kim, Tissue-engineered platforms of axon guidance, Tissue Eng. B Rev. 14 (2008) 33–51.
            [40] N. Weber, Y.S. Lee, S. Shanmugasundaram, M. Jaffe, T.L. Arinzeh, Characterization and in vitro cytocompatibility of piezoelectric electrospun
                scaffolds, Acta Biomater. 6 (2010) 3550–3556.
            [41] C. Ribeiro, S. Moreira, V. Correia, V. Sencadas, J.G. Rocha, F.M. Gama, J.L. Gómez Ribelles, S. Lanceros-M  endez, Enhanced proliferation of pre-
                osteoblastic cells by dynamic piezoelectric stimulation, RSC Adv. 2 (2012) 11504–11509.





                                          II. MECHANOBIOLOGY AND TISSUE REGENERATION
   261   262   263   264   265   266   267   268   269   270   271