Page 269 - Advances in Biomechanics and Tissue Regeneration
P. 269
266 13. MULTIDIMENSIONAL BIOMECHANICS APPROACHES
[110] Y. Min, Y. Liu, Y. Poojari, J.C. Wu, B.E. Hildreth, T.J. Rosol, A.J. Epstein, Self-doped polyaniline-based interdigitated electrodes for electrical
stimulation of osteoblast cell lines, Synth. Met. 198 (2014) 308–313.
[111] G.G. Genchi, E. Sinibaldi, L. Ceseracciu, M. Labardi, A. Marino, S. Marras, G. De Simoni, V. Mattoli, G. Ciofani, Ultrasound-activated piezo-
electric P(VDF-TrFE)/boron nitride nanotube composite films promote differentiation of human SaOS-2 osteoblast-like cells, Nanomedicine
(2017).
[112] H.F. Guo, Z.S. Li, S.W. Dong, W.J. Chen, L. Deng, Y.F. Wang, D.J. Ying, Piezoelectric PU/PVDF electrospun scaffolds for wound healing appli-
cations, Colloids Surf. B: Biointerfaces 96 (2012) 29–36.
[113] Y. Wang, M. Rouabhia, Z. Zhang, Pulsed electrical stimulation benefits wound healing by activating skin fibroblasts through the TGFβ1/ERK/
NF-κB axis, Biochim. Biophys. Acta Gen. Subj. 1860 (2016) 1551–1559.
[114] Y. Li, X. Li, R. Zhao, C. Wang, F. Qiu, B. Sun, H. Ji, J. Qiu, C. Wang, Enhanced adhesion and proliferation of human umbilical vein endothelial
cells on conductive PANI-PCL fiber scaffold by electrical stimulation, Mater. Sci. Eng. C 72 (2017) 106–112.
[115] M.A. Howard 3rd, M.S. Grady, R.C. Ritter, G.T. Gillies, W.C. Broaddus, R.G. Dacey, Magnetic neurosurgery, Stereotact. Funct. Neurosurg.
66 (1996) 102–107.
[116] O. Ergeneman, C. Bergeles, M.P. Kummer, J.J. Abbott, B.J. Nelson, Wireless intraocular microrobots: opportunities and challenges, in: J. Rosen,
B. Hannaford, R.M. Satava (Eds.), Surgical Robotics: Systems Applications and Visions, Springer US, Boston, MA, 2011, pp. 271–311.
[117] X.Z. Qu, M.Y. Wang, H.S. Ong, C.P. Zhang, Post-operative hemimaxillectomy rehabilitation using prostheses supported by zygoma implants
and remaining natural teeth, Clinics 71 (2016) 575–579.
[118] A. Da Costa, J.B. Guichard, C. Rom eyer-Bouchard, A. Gerbay, K. Isaaz, Robotic magnetic navigation for ablation of human arrhythmias, Med.
Devices (Auckland, N.Z.) 9 (2016) 331–339.
[119] M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications, J. Iran.
Chem. Soc. 7 (2010) 1–37.
[120] S.F. Medeiros, A.M. Santos, H. Fessi, A. Elaissari, Stimuli-responsive magnetic particles for biomedical applications, Int. J. Pharm. 403 (2011)
139–161.
[121] S. Gil, J.F. Mano, Magnetic composite biomaterials for tissue engineering, Biomater. Sci. 2 (2014) 812–818.
[122] J.M.D. Teresa, C. Marquina, D. Serrate, R. Fernandez-Pacheco, L. Morellon, P.A. Algarabel, M.R. Ibarra, From magnetoelectronic to biomedical
applications based on the nanoscale properties of advanced magnetic materials, Int. J. Nanotechnol. 2 (2005) 3–22.
[123] J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam, O. Zitka, Magnetic nanoparticles: from design and synthesis to real world
applications, Nano 7 (2017) 243.
[124] C.V. Fernandes, F. António, R. Clarisse, B.-L. Manuel, M. Pedro, L.-M. Senentxu, Advances in magnetic nanoparticles for biomedical appli-
cations, Adv. Healthc. Mater. 7 (2018) 1700845.
[125] A. Ito, H. Honda, Magnetic nanoparticles for tissue engineering, in: Nanotechnologies for the Life Sciences, Wiley-VCH Verlag GmbH & Co.
KGaA, 2007.
[126] S.C. McBain, H.H.P. Yiu, J. Dobson, Magnetic nanoparticles for gene and drug delivery, Int. J. Nanomedicine 3 (2008) 169–180.
[127] J. Dobson, Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery, Gene Ther. 13 (2006) 283–287.
[128] R. Weissleder, G. Elizondo, J. Wittenberg, C.A. Rabito, H.H. Bengele, L. Josephson, Ultrasmall superparamagnetic iron oxide: characterization
of a new class of contrast agents for MR imaging, Radiology 175 (1990) 489–493.
[129] T. Neuberger, B. Sch€ opf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: pos-
sibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater. 293 (2005) 483–496.
[130] N. Wang, J.P. Butler, D.E. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Science 260 (1993) 1124–1127.
[131] A.R. Bausch, F. Ziemann, A.A. Boulbitch, K. Jacobson, E. Sackmann, Local measurements of viscoelastic parameters of adherent cell surfaces by
magnetic bead microrheometry, Biophys. J. 75 (1998) 2038–2049.
[132] A.R. Bausch, W. M€ oller, E. Sackmann, Measurement of local viscoelasticity and forces in living cells by magnetic tweezers, Biophys. J. 76 (1999)
573–579.
[133] M. D’Addario, P.D. Arora, R.P. Ellen, C.A.G. McCulloch, Regulation of tension-induced mechanotranscriptional signals by the microtubule
network in fibroblasts, J. Biol. Chem. 278 (2003) 53090–53097.
[134] M. Glogauer, J. Ferrier, C.A. McCulloch, Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2+ flux in
fibroblasts, Am. J. Phys. Cell Phys. 269 (1995) C1093–C1104.
[135] M. Glogauer, P. Arora, G. Yao, I. Sokholov, J. Ferrier, C.A. McCulloch, Calcium ions and tyrosine phosphorylation interact coordinately with
actin to regulate cytoprotective responses to stretching, J. Cell Sci. 110 (1997) 11–21.
[136] M. Glogauer, J. Ferrier, A new method for application of force to cells via ferric oxide beads, Pflugers Arch. 435 (1997) 320–327.
[137] H. Pommerenke, C. Schmidt, F. D€ urr, B. Nebe, F. L€ uthen, P. M€ uller, J. Rychly, The mode of mechanical integrin stressing controls intracellular
signaling in osteoblasts, J. Bone Miner. Res. 17 (2002) 603–611.
[138] J. Dobson, Remote control of cellular behaviour with magnetic nanoparticles, Nat. Nanotechnol. 3 (2008) 139–143.
[139] R. Guduru, S. Khizroev, Magnetic field-controlled release of paclitaxel drug from functionalized magnetoelectric nanoparticles, Part. Part. Syst.
Charact. 31 (2014) 605–611.
[140] C. Ribeiro, V. Correia, P. Martins, F.M. Gama, S. Lanceros-Mendez, Proving the suitability of magnetoelectric stimuli for tissue engineering
applications, Colloids Surf. B: Biointerfaces 140 (2016) 430–436.
¸
[141] R. Goncalves, P. Martins, D.M. Correia, V. Sencadas, J.L. Vilas, L.M. León, G. Botelho, S. Lanceros-M endez, Development of magnetoelectric
CoFe 2 O 4 /poly(vinylidene fluoride) microspheres, RSC Adv. 5 (2015) 35852–35857.
[142] Y. Li, Z. Wang, J. Yao, T. Yang, Z. Wang, J.-M. Hu, C. Chen, R. Sun, Z. Tian, J. Li, L.-Q. Chen, D. Viehland, Magnetoelectric quasi-(0-3) nano-
composite heterostructures, Nat. Commun. 6 (2015) 6680.
[143] P. Martins, S. Lanceros-M endez, Polymer-based magnetoelectric materials, Adv. Funct. Mater. 23 (2013) 3371–3385.
[144] J. Jin, S.-G. Lu, C. Chanthad, Q. Zhang, M.A. Haque, Q. Wang, Multiferroic polymer composites with greatly enhanced magnetoelectric effect
under a low magnetic bias, Adv. Mater. 23 (2011) 3853–3858.
II. MECHANOBIOLOGY AND TISSUE REGENERATION