Page 378 - Advances in Biomechanics and Tissue Regeneration
P. 378

REFERENCES                                         375

             [7] M.D. Buschmann, Y.A. Gluzband, A.J. Grodzinsky, J.H. Kimura, E.B. Hunziker, Chondrocytes in agarose culture synthesize a mechanically
                functional extracellular matrix, J. Orthop. Res. 10 (6) (1992) 745–758.
             [8] S. Zhou, Z. Cui, J.P. Urban, Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the
                cartilage-bone interface: a modeling study, Arthritis Rheum. 50 (12) (2004) 3915–3924.
             [9] S. Roberts, P. Colombier, A. Sowman, C. Mennan, J.H. R€ olfing, J. Guicheux, et al., Ageing in the musculoskeletal system, Acta Orthop.
                87 (eSuppl. 363) (2016) 15–25.
            [10] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, et al., Molecular Biology of the Cell, sixth ed., Garland Science, New York, 2015
                (Chapter 19).
            [11] D. Heinegård, Proteoglycans and more—from molecules to biology, Int. J. Exp. Pathol. 90 (6) (2009) 575–586.
            [12] G.E. Kempson, H. Muir, S.A. Swanson, M.A. Freeman, Correlations between stiffness and the chemical constituents of cartilage on the human
                femoral head, Biochim. Biophys. Acta 215 (1) (1970) 70–77.
            [13] C. Liu, B. Wang, L. Xiao, Y. Li, L. Xu, Z. Zhao, et al., Protective effects of the pericellular matrix of chondrocyte on articular cartilage against the
                development of osteoarthritis, Histol. Histopathol. 33 (2018) 757–764.
            [14] M. Rahmati, G. Nalesso, A. Mobasheri, M. Mozafari, Aging and osteoarthritis: central role of the extracellular matrix, Ageing Res. Rev.
                40 (2017) 20–30.
            [15] M. Hasegawa, T. Yoshida, A. Sudo, Role of tenascin-C in articular cartilage, Mod. Rheumatol. 28 (2) (2018) 215–220.
            [16] M.A. Szychlinska, F.M. Trovato, M. Di Rosa, L. Malaguarnera, L. Puzzo, R. Leonardi, et al., Co-expression and co-localization of cartilage
                glycoproteins CHI3L1 and lubricin in osteoarthritic cartilage: morphological, immunohistochemical and gene expression profiles, Int. J.
                Mol. Sci. 17 (3) (2016) 359, https://doi.org/10.3390/ijms17030359.
            [17] C.A. Poole, Articular cartilage chondrons: form, function and failure, J. Anat. 191 (1997) 1–13.
            [18] E.M. Darling, R.E. Wilusz, M.P. Bolognesi, S. Zauscher, F. Guilak, Spatial mapping of the biomechanical properties of the pericellular matrix of
                articular cartilage measured in situ via atomic force microscopy, Biophys. J. 98 (12) (2010) 2848–2856.
            [19] W. Knudson, S. Ishizuka, K. Terabe, E.B. Askew, C.B. Knudson, The pericellular hyaluronan of articular chondrocytes, Matrix Biol. (2018),
                https://doi.org/10.1016/j.matbio.2018.02.005.
            [20] J. Becerra, J.A. Andrades, E. Guerado, P. Zamora-Navas, J.M. López-Puertas, A.H. Reddi, Articular cartilage: structure and regeneration, Tis-
                sue Eng. Part B Rev. 16 (6) (2010) 617–627.
            [21] B. Rolauffs, J.M. Williams, M. Aurich, A.J. Grodzinsky, K.E. Kuettner, A.A. Cole, Proliferative remodeling of the spatial organization of human
                superficial chondrocytes distant from focal early osteoarthritis, Arthritis Rheum. 62 (2) (2010) 489–498.
            [22] K.M. Heinemeier, P. Schjerling, J. Heinemeier, M.B. Møller, M.R. Krogsgaard, T. Grum-Schwensen, et al., Radiocarbon dating reveals minimal
                collagen turnover in both healthy and osteoarthritic human cartilage, Sci. Transl. Med. 8 (346) (2016) 346ra90.
            [23] A.E.M. Jørgensen, M. Kjær, K.M. Heinemeier, The effect of aging and mechanical loading on the metabolism of articular cartilage, J. Rheumatol.
                44 (4) (2017) 410–417.
            [24] B. Vanwanseele, F. Eckstein, H. Knecht, A. Spaepen, E. St€ ussi, Longitudinal analysis of cartilage atrophy in the knees of patients with spinal
                cord injury, Arthritis Rheum. 48 (12) (2003) 3377–3381.
            [25] J.A. Martin, J.A. Buckwalter, The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair, J. Bone
                Joint Surg. Am. 85-A (Suppl. 2) (2003) 106–110.
            [26] K. McCulloch, G.J. Litherland, T.S. Rai, Cellular senescence in osteoarthritis pathology, Aging Cell 16 (2) (2017) 210–218.
            [27] J.S. Price, J.G. Waters, C. Darrah, C. Pennington, D.R. Edwards, S.T. Donell, et al., The role of chondrocyte senescence in osteoarthritis, Aging
                Cell 1 (1) (2002) 57–65.
            [28] W.S. Toh, M. Brittberg, J. Farr, C.B. Foldager, A.H. Gomoll, J.H. Hui, et al., Cellular senescence in aging and osteoarthritis, Acta Orthop.
                87 (2016) 6–14. eSuppl. 363.
            [29] J.A. Martin, T.D. Brown, A.D. Heiner, J.A. Buckwalter, Chondrocyte senescence, joint loading and osteoarthritis, Clin. Orthop. Relat. Res.
                427 (Suppl) (2004) S96–103.
            [30] M.M. Temple, W.C. Bae, M.Q. Chen, M. Lotz, D. Amiel, R.D. Coutts, et al., Age- and site-associated biomechanical weakening of human artic-
                ular cartilage of the femoral condyle, Osteoarthr. Cartil. 15 (9) (2007) 1042–1052.
            [31] C.S. Adams, W.E. Horton, Chondrocyte apoptosis increases with age in the articular cartilage of adult animals, Anat. Rec. 250 (4) (1998)
                418–425.
            [32] M. Hudelmaier, C. Glaser, J. Hohe, K.H. Englmeier, M. Reiser, R. Putz, et al., Age-related changes in the morphology and deformational behav-
                ior of knee joint cartilage, Arthritis Rheum. 44 (11) (2001) 2556–2561.
            [33] J.A. Buckwalter, S.L. Woo, V.M. Goldberg, E.C. Hadley, F. Booth, T.R. Oegema, et al., Soft-tissue aging and musculoskeletal function, J. Bone
                Joint Surg. Am. 75 (10) (1993) 1533–1548.
            [34] V.M. Dejica, J.S. Mort, S. Laverty, J. Antoniou, D.J. Zukor, M. Tanzer, et al., Increased type II collagen cleavage by cathepsin K and collagenase
                activities with aging and osteoarthritis in human articular cartilage, Arthritis Res. Ther. 14 (3) (2012) R113, https://doi.org/10.1186/ar3839.
            [35] W. Wu, R.C. Billinghurst, I. Pidoux, J. Antoniou, D. Zukor, M. Tanzer, et al., Sites of collagenase cleavage and denaturation of type II collagen in
                aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase
                13, Arthritis Rheum. 46 (8) (2002) 2087–2094.
            [36] M.W. Holmes, M.T. Bayliss, H. Muir, Hyaluronic acid in human articular cartilage. Age-related changes in content and size, Biochem. J. 250 (2)
                (1988) 435–441.
            [37] L.S. Lohmander, P.J. Neame, J.D. Sandy, The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates
                cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis, Arthritis Rheum. 36 (9) (1993) 1214–1222.
            [38] R.F. Loeser, Age-related changes in the musculoskeletal system and the development of osteoarthritis, Clin. Geriatr. Med. 26 (3) (2010) 371–386.
            [39] S. Manzano, M. Doblar  e, M.H. Doweidar, Altered mechano-electrochemical behavior of articular cartilage in populations with obesity, Appl.
                Sci. 6 (7) (2016) 186.
            [40] S. Manzano, R. Manzano, M. Doblar  e, M.H. Doweidar, Altered swelling and ion fluxes in articular cartilage as a biomarker in osteoarthritis and
                joint immobilization: a computational analysis, J. R. Soc. Interface 12 (102) (2015) 20141090.




                                          II. MECHANOBIOLOGY AND TISSUE REGENERATION
   373   374   375   376   377   378   379   380   381   382   383