Page 380 - Advances in Biomechanics and Tissue Regeneration
P. 380
REFERENCES 377
[75] J.L. White, N.J. Walker, J.C. Hu, D.L. Borjesson, K.A. Athanasiou, A comparison of bone marrow and cord blood mesenchymal stem cells for
cartilage self-assembly, Tissue Eng. Part A 24 (15–16) (2018) 1262–1272.
[76] Y.B. Park, C.W. Ha, C.H. Lee, Y.G. Park, Restoration of a large osteochondral defect of the knee using a composite of umbilical cord blood-
derived mesenchymal stem cells and hyaluronic acid hydrogel: a case report with a 5-year follow-up, BMC Musculoskelet. Disord. 18 (1)
(2017) 59.
[77] S. Liu, Y. Jia, M. Yuan, W. Guo, J. Huang, B. Zhao, et al., Repair of osteochondral defects using human umbilical cord Wharton’s jelly-derived
mesenchymal stem cells in a rabbit model, Biomed. Res. Int. 2017 (2017) 8760383.
[78] S. Gronthos, J. Brahim, W. Li, L.W. Fisher, N. Cherman, A. Boyde, et al., Stem cell properties of human dental pulp stem cells, J. Dent. Res. 81 (8)
(2002) 531–535.
[79] K. Chen, H. Xiong, N. Xu, Y. Shen, Y. Huang, C. Liu, Chondrogenic potential of stem cells from human exfoliated deciduous teeth in vitro and
in vivo, Acta Odontol. Scand. 72 (8) (2014) 664–672.
[80] J. Dai, J. Wang, J. Lu, The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on
chondrogenesis and ossification in engineered cartilage, Biomaterials 33 (31) (2012) 7699–7711.
[81] S.H. Zainal Ariffin, S. Kermani, R. Megat Abdul Wahab, S. Senafi, Z. Zainal Ariffin, M. Abdul Razak, In vitro chondrogenesis transformation
study of mouse dental pulp stem cells, Sci. World J. 2012 (2012) 827149.
[82] C.L. Nemeth, K. Janebodin, A.E. Yuan, J.E. Dennis, M. Reyes, D.H. Kim, Enhanced chondrogenic differentiation of dental pulp stem cells using
nanopatterned PEG-GelMA-HA hydrogels, Tissue Eng. Part A 20 (21 22) (2014) 2817–2829.
[83] W.L. Fu, C.Y. Zhou, J.K. Yu, A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral
blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model, Am. J. Sports
Med. 42 (3) (2014) 592–601.
[84] P.P. Chong, L. Selvaratnam, A.A. Abbas, T. Kamarul, Human peripheral blood derived mesenchymal stem cells demonstrate similar charac-
teristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells, J. Orthop. Res. 30 (4) (2012) 634–642.
[85] K.Y. Saw, A. Anz, C. Siew-Yoke Jee, S. Merican, R. Ching-Soong Ng, S.A. Roohi, et al., Articular cartilage regeneration with autologous periph-
eral blood stem cells versus hyaluronic acid: a randomized controlled trial, Arthroscopy 29 (4) (2013) 684–694.
[86] K.Y. Saw, A. Anz, C.S. Jee, R.C. Ng, N. Mohtarrudin, K. Ragavanaidu, High tibial osteotomy in combination with chondrogenesis after stem
cell therapy: a histologic report of 8 cases, Arthroscopy 31 (10) (2015) 1909–1920.
[87] R. Chijimatsu, M. Kobayashi, K. Ebina, T. Iwahashi, Y. Okuno, M. Hirao, et al., Impact of dexamethasone concentration on cartilage tissue
formation from human synovial derived stem cells in vitro, Cytotechnology 70 (2) (2018) 819–829.
[88] Y. Matsukura, T. Muneta, K. Tsuji, H. Koga, I. Sekiya, Mesenchymal stem cells in synovial fluid increase after meniscus injury, Clin. Orthop.
Relat. Res. 472 (5) (2014) 1357–1364.
[89] Z. Jia, Q. Liu, Y. Liang, X. Li, X. Xu, K. Ouyang, et al., Repair of articular cartilage defects with intra-articular injection of autologous rabbit
synovial fluid-derived mesenchymal stem cells, J. Transl. Med. 16 (1) (2018) 123.
[90] Y. Cai, J. Li, C.K. Poh, H.C. Tan, E. San Thian, J.Y. Hsi Fuh, et al., Collagen grafted 3D polycaprolactone scaffolds for enhanced cartilage regen-
eration, J. Mater. Chem. B 1 (43) (2013) 5971–5976.
[91] F. Berthiaume, T.J. Maguire, M.L. Yarmush, Tissue engineering and regenerative medicine: history, progress, and challenges, Annu. Rev.
Chem. Biomol. Eng. 2 (2) (2011) 403–430.
[92] J.A. Hendriks, L. Moroni, J. Riesle, The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration,
Biomaterials 34 (17) (2013) 4259–4265.
[93] S. Manzano, M. Doblar e, M.H. Doweidar, Parameter-dependent behavior of articular cartilage: 3D mechano-electrochemical computational
model, Comput. Methods Prog. Biomed. 122 (3) (2015) 491–502.
[94] C.H. Wu, C.S. Ko, J.W. Huang, Effects of exogenous glycosaminoglycans on human chondrocytes cultivated on type II collagen scaffolds,
J. Mater. Sci. Mater. Med. 21 (2) (2010) 725–729.
[95] K.L. Spiller, S.A. Maher, A.M. Lowman, Hydrogels for the repair of articular cartilage defects, Tissue Eng. Part B Rev. 17 (4) (2011) 281–299.
[96] C. Sanjurjo-Rodríguez, A.H. Martínez-Sánchez, T. Hermida-Gómez, I. Fuentes-Boquete, S. Díaz-Prado, F.J. Blanco, Differentiation of human
mesenchymal stromal cells cultured on collagen sponges for cartilage repair, Histol. Histopathol. 31 (11) (2016) 1221–1239.
[97] X. Yang, Z. Lu, H. Wu, W. Li, L. Zheng, J. Zhao, Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue
engineering, Mater. Sci. Eng. C Mater. Biol. Appl. 83 (2018) 195–201.
[98] F. Mohammadi, S. Mohammadi Samani, N. Tanideh, F. Ahmadi, Hybrid scaffolds of hyaluronic acid and collagen loaded with prednisolone:
an interesting system for osteoarthritis, Adv. Pharm. Bull. 8 (1) (2018) 11–19.
[99] P. Cherubino, F.A. Grassi, P. Bulgheroni, M. Ronga, Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary
report, J. Orthop. Surg. 11 (1) (2003) 10–15.
[100] L. Han, Z.W. Zhang, B.H. Wang, Z.K. Wen, Construction and biocompatibility of a thin type I/II collagen composite scaffold, Cell Tissue Bank.
19 (1) (2018) 47–59.
[101] T.A.E. Ahmed, M.T. Hincke, Strategies for articular cartilage lesion repair and functional restoration, Tissue Eng. Part B Rev. 16 (3) (2010)
305–329.
[102] W. Zhao, X. Jin, Y. Cong, Degradable natural polymer hydrogels for articular cartilage tissue engineering, J. Chem. Technol. Biotechnol. 88 (3)
(2013) 327–339.
[103] H. Park, J.S. Temenoff, Y. Tabata, Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem
cells encapsulated in injectable hydrogel composites, J. Biomed. Mater. Res. Part A 88A (4) (2009) 889–897.
[104] L. Kim, R.L. Mauck, J.A. Burdick, Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid, Biomaterials 32 (34)
(2011) 8771–8782.
[105] P. Stagnaro, I. Schizzi, R. Utzeri, E. Marsano, M. Castellano, Alginate-polymethacrylate hybrid hydrogels for potential osteochondral tissue
regeneration, Carbohydr. Polym. 185 (2018) 56–62.
[106] H. Yu, G. Cauchois, N. Louve, Y. Chen, R. Rahouadj, C. Huselstein, Comparison of MSC properties in two different hydrogels, impact of
mechanical properties, Biomed. Mater. Eng. 28 (s1) (2017) S193–S200.
II. MECHANOBIOLOGY AND TISSUE REGENERATION