Page 379 - Advances in Biomechanics and Tissue Regeneration
P. 379

376                            18. CARTILAGE REGENERATION AND TISSUE ENGINEERING

            [41] S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar, Is collagen fiber damage the cause of early softening in articular cartilage? Osteoarthr.
                Cartil. 21 (1) (2013) 136–143.
            [42] G.P. Dowthwaite, J.C. Bishop, S.N. Redman, I.M. Khan, P. Rooney, D.J. Evans, et al., The surface of articular cartilage contains a progenitor cell
                population, J. Cell Sci. 117 (6) (2004) 889–897.
            [43] D. Seol, D.J. McCabe, H. Choe, H. Zheng, Y. Yu, K. Jang, et al., Chondrogenic progenitor cells respond to cartilage injury, Arthritis Rheum.
                64 (11) (2012) 3626–3637.
            [44] T. Kuilman, D.S. Peeper, Senescence-messaging secretome: SMS-ing cellular stress, Nat. Rev. Cancer 9 (2) (2009) 81–94.
            [45] P. Lepetsos, A.G. Papavassiliou, ROS/oxidative stress signaling in osteoarthritis, Biochim. Biophys. Acta 1862 (4) (2016) 576–591.
            [46] U. Ahmed, A. Anwar, R.S. Savage, P.J. Thornalley, N. Rabbani, Protein oxidation, nitration and glycation biomarkers for early-stage diagnosis
                of osteoarthritis of the knee and typing and progression of arthritic disease, Arthritis Res. Ther. 18 (1) (2016) 250.
            [47] L.J. Sandell, T. Aigner, Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis, Arthritis Res. 3 (2) (2001)
                107–113.
            [48] P.C. Kreuz, M.R. Steinwachs, C. Erggelet, S.J. Krause, G. Konrad, M. Uhl, et al., Results after microfracture of full-thickness chondral defects in
                different compartments in the knee, Osteoarthr. Cartil. 14 (11) (2006) 1119–1125.
            [49] W.T. Green, Articular cartilage repair: behavior of rabbit chondrocytes during tissue culture and subsequent allografting, Clin. Orthop. Relat.
                Res. (124) (1977) 237–250.
            [50] M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, L. Peterson, Treatment of deep cartilage defects in the knee with autologous
                chondrocyte transplantation, N. Engl. J. Med. 331 (14) (1994) 889–895.
            [51] T.A.E. Ahmed, M.T. Hincke, Mesenchymal stem cell-based tissue engineering strategies for repair of articular cartilage, Histol. Histopathol.
                29 (6) (2014) 669–689.
            [52] M. Schnabel, S. Marlovits, G. Eckhoff, I. Fichtel, L. Gotzen, V. V  ecsei, et al., Dedifferentiation-associated changes in morphology and gene
                expression in primary human articular chondrocytes in cell culture, Osteoarthr. Cartil. 10 (1) (2002) 62–70.
            [53] E.M. Darling, K.A. Athanasiou, Rapid phenotypic changes in passaged articular chondrocyte subpopulations, J. Orthop. Res. 23 (2) (2005)
                425–432.
            [54] M. Mata, L. Milian, M. Oliver, J. Zurriaga, M. Sancho-Tello, J.J. Martin de Llano, et al., In vivo articular cartilage regeneration using human
                dental pulp stem cells cultured in an alginate scaffold: a preliminary study, Stem Cells Int. 2017 (2017) 8309256.
            [55] B.J. Huang, J.C. Hu, K.A. Athanasiou, Cell-based tissue engineering strategies used in the clinical repair of articular cartilage, Biomaterials
                98 (2016) 1–22.
            [56] Y. Zhang, W. Guo, M. Wang, C. Hao, L. Lu, S. Gao, et al., Co-culture systems-based strategies for articular cartilage tissue engineering, J. Cell.
                Physiol. 233 (3) (2018) 1940–1951.
            [57] D.J. Huey, J.C. Huand, K.A. Athanasiou, Unlike bone, cartilage regeneration remains elusive, Science 338 (6109) (2012) 917–921.
            [58] S. Roberts, J. Menage, L.J. Sandell, Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue
                following autologous chondrocyte implantation, Knee 16 (5) (2009) 398–404.
            [59] K. Shimomura, W. Ando, H. Fujie, D.A. Hart, H. Yoshikawa, N. Nakamura, Scaffold-free tissue engineering for injured joint surface restora-
                tion, J. Exp. Orthop. 5 (1) (2018) 2.
            [60] C.R. Fellows, C. Matta, R. Zakany, I.M. Khan, A. Mobasheri, Adipose, bone marrow and synovial joint-derived mesenchymal stem cells for
                cartilage repair, Front. Genet. 7 (2016) 213.
            [61] Y. Jiang, Y. Cai, W. Zhang, Z. Yin, C. Hu, T. Tong, et al., Human cartilage-derived progenitor cells from committed chondrocytes for efficient
                cartilage repair and regeneration, Stem Cells Transl. Med. 5 (6) (2016) 733–744.
            [62] J.N. Fisher, I. Tessaro, T. Bertocco, G.M. Peretti, L. Mangiavini, The application of stem cells from different tissues to cartilage repair, Stem Cells
                Int. 2017 (2017) 2761678.
            [63] N. Tran-Khanh, C.D. Hoemann, M.D. McKee, J.E. Henderson, M.D. Buschmann, Aged bovine chondrocytes display a diminished capacity to
                produce a collagen-rich, mechanically functional cartilage extracellular matrix, J. Orthop. Res. 23 (6) (2005) 1354–1362.
            [64] M. Sancho-Tello, F. Forriol, P. Gastaldi, A. Ruiz-Saurí, J.J. Martín de Llano, E. Novella-Maestre, et al., Time evolution of in vivo articular
                cartilage repair induced by bone marrow stimulation and scaffold implantation in rabbits, Int. J. Artif. Organs 38 (4) (2015) 210–223.
            [65] M. Sancho-Tello, F. Forriol, J.J. Martín de Llano, C.M. Antolinos-Turpín, J.A. Gómez-Tejedor, J.L. Gómez Ribelles, et al., Biostable scaffolds of
                polyacrylate polymers implanted in the articular cartilage induce hyaline-like cartilage regeneration in rabbits, Int. J. Artif. Organs 40 (7) (2017)
                350–357.
            [66] P.A. Zuk, M. Zhu, H. Mizuno, J.W. Futrell, A.J. Katz, P. Benhaim, et al., Multilineage cells from human adipose tissue: implications for cell-
                based therapies, Tissue Eng. 7 (2) (2001) 211–228.
            [67] H.A. Awad, M.Q. Wickham, H.A. Leddy, Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin
                scaffolds, Biomaterials 25 (16) (2004) 3211–3222.
            [68] S.C. Wu, J.K. Chang, C.K. Wang, Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microen-
                vironment, Biomaterials 31 (4) (2010) 631–640.
            [69] H. Afizah, Z. Yang, J.H. Hui, H.W. Ouyang, E.H. Lee, A comparison between the chondrogenic potential of human bone marrow stem cells
                (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors, Tissue Eng. 13 (4) (2007) 659–666.
            [70] M.C. Ronziere, E. Perrier, F. Mallein-Gerin, A.M. Freyria, Chondrogenic potential of bone marrow- and adipose tissue-derived adult human
                mesenchymal stem cells, Biomed. Mater. Eng. 20 (3) (2010) 145–158.
            [71] C.H. Jo, Y.G. Lee, W.H. Shin, Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-
                concept clinical trial, Stem Cells 32 (5) (2014) 1254–1266.
            [72] T. Gómez-Leduc, M. Desanc  e, M. Hervieu, F. Legendre, D. Ollitrault, C. de Vienne, et al., Hypoxia is a critical parameter for chondrogenic
                differentiation of human umbilical cord blood mesenchymal stem cells in type I/III collagen sponges, Int. J. Mol. Sci. 18 (9) (2017) E1933.
            [73] A. Marmotti, S. Mattia, F. Castoldi, A. Barbero, L. Mangiavini, D.E. Bonasia, et al., Allogeneic umbilical cord-derived mesenchymal stem cells
                as a potential source for cartilage and bone regeneration: an in vitro study, Stem Cells Int. 2017 (2017) 1732094.
            [74] M. Desanc  e, R. Contentin, L. Bertoni, T. Gomez-Leduc, T. Branly, S. Jacquet, et al., Chondrogenic differentiation of defined equine mesenchy-
                mal stem cells derived from umbilical cord blood for use in cartilage repair therapy, Int. J. Mol. Sci. 19 (2) (2018) E537.



                                          II. MECHANOBIOLOGY AND TISSUE REGENERATION
   374   375   376   377   378   379   380   381   382   383   384