Page 379 - Advances in Biomechanics and Tissue Regeneration
P. 379
376 18. CARTILAGE REGENERATION AND TISSUE ENGINEERING
[41] S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar, Is collagen fiber damage the cause of early softening in articular cartilage? Osteoarthr.
Cartil. 21 (1) (2013) 136–143.
[42] G.P. Dowthwaite, J.C. Bishop, S.N. Redman, I.M. Khan, P. Rooney, D.J. Evans, et al., The surface of articular cartilage contains a progenitor cell
population, J. Cell Sci. 117 (6) (2004) 889–897.
[43] D. Seol, D.J. McCabe, H. Choe, H. Zheng, Y. Yu, K. Jang, et al., Chondrogenic progenitor cells respond to cartilage injury, Arthritis Rheum.
64 (11) (2012) 3626–3637.
[44] T. Kuilman, D.S. Peeper, Senescence-messaging secretome: SMS-ing cellular stress, Nat. Rev. Cancer 9 (2) (2009) 81–94.
[45] P. Lepetsos, A.G. Papavassiliou, ROS/oxidative stress signaling in osteoarthritis, Biochim. Biophys. Acta 1862 (4) (2016) 576–591.
[46] U. Ahmed, A. Anwar, R.S. Savage, P.J. Thornalley, N. Rabbani, Protein oxidation, nitration and glycation biomarkers for early-stage diagnosis
of osteoarthritis of the knee and typing and progression of arthritic disease, Arthritis Res. Ther. 18 (1) (2016) 250.
[47] L.J. Sandell, T. Aigner, Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis, Arthritis Res. 3 (2) (2001)
107–113.
[48] P.C. Kreuz, M.R. Steinwachs, C. Erggelet, S.J. Krause, G. Konrad, M. Uhl, et al., Results after microfracture of full-thickness chondral defects in
different compartments in the knee, Osteoarthr. Cartil. 14 (11) (2006) 1119–1125.
[49] W.T. Green, Articular cartilage repair: behavior of rabbit chondrocytes during tissue culture and subsequent allografting, Clin. Orthop. Relat.
Res. (124) (1977) 237–250.
[50] M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, L. Peterson, Treatment of deep cartilage defects in the knee with autologous
chondrocyte transplantation, N. Engl. J. Med. 331 (14) (1994) 889–895.
[51] T.A.E. Ahmed, M.T. Hincke, Mesenchymal stem cell-based tissue engineering strategies for repair of articular cartilage, Histol. Histopathol.
29 (6) (2014) 669–689.
[52] M. Schnabel, S. Marlovits, G. Eckhoff, I. Fichtel, L. Gotzen, V. V ecsei, et al., Dedifferentiation-associated changes in morphology and gene
expression in primary human articular chondrocytes in cell culture, Osteoarthr. Cartil. 10 (1) (2002) 62–70.
[53] E.M. Darling, K.A. Athanasiou, Rapid phenotypic changes in passaged articular chondrocyte subpopulations, J. Orthop. Res. 23 (2) (2005)
425–432.
[54] M. Mata, L. Milian, M. Oliver, J. Zurriaga, M. Sancho-Tello, J.J. Martin de Llano, et al., In vivo articular cartilage regeneration using human
dental pulp stem cells cultured in an alginate scaffold: a preliminary study, Stem Cells Int. 2017 (2017) 8309256.
[55] B.J. Huang, J.C. Hu, K.A. Athanasiou, Cell-based tissue engineering strategies used in the clinical repair of articular cartilage, Biomaterials
98 (2016) 1–22.
[56] Y. Zhang, W. Guo, M. Wang, C. Hao, L. Lu, S. Gao, et al., Co-culture systems-based strategies for articular cartilage tissue engineering, J. Cell.
Physiol. 233 (3) (2018) 1940–1951.
[57] D.J. Huey, J.C. Huand, K.A. Athanasiou, Unlike bone, cartilage regeneration remains elusive, Science 338 (6109) (2012) 917–921.
[58] S. Roberts, J. Menage, L.J. Sandell, Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue
following autologous chondrocyte implantation, Knee 16 (5) (2009) 398–404.
[59] K. Shimomura, W. Ando, H. Fujie, D.A. Hart, H. Yoshikawa, N. Nakamura, Scaffold-free tissue engineering for injured joint surface restora-
tion, J. Exp. Orthop. 5 (1) (2018) 2.
[60] C.R. Fellows, C. Matta, R. Zakany, I.M. Khan, A. Mobasheri, Adipose, bone marrow and synovial joint-derived mesenchymal stem cells for
cartilage repair, Front. Genet. 7 (2016) 213.
[61] Y. Jiang, Y. Cai, W. Zhang, Z. Yin, C. Hu, T. Tong, et al., Human cartilage-derived progenitor cells from committed chondrocytes for efficient
cartilage repair and regeneration, Stem Cells Transl. Med. 5 (6) (2016) 733–744.
[62] J.N. Fisher, I. Tessaro, T. Bertocco, G.M. Peretti, L. Mangiavini, The application of stem cells from different tissues to cartilage repair, Stem Cells
Int. 2017 (2017) 2761678.
[63] N. Tran-Khanh, C.D. Hoemann, M.D. McKee, J.E. Henderson, M.D. Buschmann, Aged bovine chondrocytes display a diminished capacity to
produce a collagen-rich, mechanically functional cartilage extracellular matrix, J. Orthop. Res. 23 (6) (2005) 1354–1362.
[64] M. Sancho-Tello, F. Forriol, P. Gastaldi, A. Ruiz-Saurí, J.J. Martín de Llano, E. Novella-Maestre, et al., Time evolution of in vivo articular
cartilage repair induced by bone marrow stimulation and scaffold implantation in rabbits, Int. J. Artif. Organs 38 (4) (2015) 210–223.
[65] M. Sancho-Tello, F. Forriol, J.J. Martín de Llano, C.M. Antolinos-Turpín, J.A. Gómez-Tejedor, J.L. Gómez Ribelles, et al., Biostable scaffolds of
polyacrylate polymers implanted in the articular cartilage induce hyaline-like cartilage regeneration in rabbits, Int. J. Artif. Organs 40 (7) (2017)
350–357.
[66] P.A. Zuk, M. Zhu, H. Mizuno, J.W. Futrell, A.J. Katz, P. Benhaim, et al., Multilineage cells from human adipose tissue: implications for cell-
based therapies, Tissue Eng. 7 (2) (2001) 211–228.
[67] H.A. Awad, M.Q. Wickham, H.A. Leddy, Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin
scaffolds, Biomaterials 25 (16) (2004) 3211–3222.
[68] S.C. Wu, J.K. Chang, C.K. Wang, Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microen-
vironment, Biomaterials 31 (4) (2010) 631–640.
[69] H. Afizah, Z. Yang, J.H. Hui, H.W. Ouyang, E.H. Lee, A comparison between the chondrogenic potential of human bone marrow stem cells
(BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors, Tissue Eng. 13 (4) (2007) 659–666.
[70] M.C. Ronziere, E. Perrier, F. Mallein-Gerin, A.M. Freyria, Chondrogenic potential of bone marrow- and adipose tissue-derived adult human
mesenchymal stem cells, Biomed. Mater. Eng. 20 (3) (2010) 145–158.
[71] C.H. Jo, Y.G. Lee, W.H. Shin, Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-
concept clinical trial, Stem Cells 32 (5) (2014) 1254–1266.
[72] T. Gómez-Leduc, M. Desanc e, M. Hervieu, F. Legendre, D. Ollitrault, C. de Vienne, et al., Hypoxia is a critical parameter for chondrogenic
differentiation of human umbilical cord blood mesenchymal stem cells in type I/III collagen sponges, Int. J. Mol. Sci. 18 (9) (2017) E1933.
[73] A. Marmotti, S. Mattia, F. Castoldi, A. Barbero, L. Mangiavini, D.E. Bonasia, et al., Allogeneic umbilical cord-derived mesenchymal stem cells
as a potential source for cartilage and bone regeneration: an in vitro study, Stem Cells Int. 2017 (2017) 1732094.
[74] M. Desanc e, R. Contentin, L. Bertoni, T. Gomez-Leduc, T. Branly, S. Jacquet, et al., Chondrogenic differentiation of defined equine mesenchy-
mal stem cells derived from umbilical cord blood for use in cartilage repair therapy, Int. J. Mol. Sci. 19 (2) (2018) E537.
II. MECHANOBIOLOGY AND TISSUE REGENERATION